Mister Exam

Graphing y = log0.2(2x-7)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
f(x) = log(0.0)*2*(2*x - 7)
$$f{\left(x \right)} = \log{\left(0.0 \right)} 2 \cdot \left(2 x - 7\right)$$
f = log(0.0)*2*(2*x - 1*7)
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right) = 0$$
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to log(0)*2*(2*x - 1*7).
$$\log{\left(0 \right)} 2 \left(\left(-1\right) 7 + 2 \cdot 0\right)$$
The result:
$$f{\left(0 \right)} = \tilde{\infty}$$
sof doesn't intersect Y
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\text{NaN} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\text{NaN} = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right) = \lim_{x \to -\infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right)$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = \lim_{x \to -\infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right)$$
$$\lim_{x \to \infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right) = \lim_{x \to \infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right)$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = \lim_{x \to \infty}\left(\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right)\right)$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of log(0)*2*(2*x - 1*7), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right) = \lim_{x \to -\infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right)$$
Let's take the limit
so,
inclined asymptote equation on the left:
$$y = x \lim_{x \to -\infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right)$$
$$\lim_{x \to \infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right) = \lim_{x \to \infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right)$$
Let's take the limit
so,
inclined asymptote equation on the right:
$$y = x \lim_{x \to \infty}\left(\frac{2 \cdot \left(2 x - 7\right) \log{\left(0 \right)}}{x}\right)$$
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right) = 2 \left(- 2 x - 7\right) \log{\left(0 \right)}$$
- No
$$\log{\left(0 \right)} 2 \cdot \left(2 x - 7\right) = - 2 \left(- 2 x - 7\right) \log{\left(0 \right)}$$
- No
so, the function
not is
neither even, nor odd