Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\frac{\log{\left(x \right)}}{x^{3}} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 1$$
Numerical solution$$x_{1} = 51648.7335013236$$
$$x_{2} = 47431.0289814946$$
$$x_{3} = 21838.0604095039$$
$$x_{4} = 31507.8906383604$$
$$x_{5} = 34708.624734302$$
$$x_{6} = 41084.232681033$$
$$x_{7} = 49541.1279519006$$
$$x_{8} = 52701.6428836723$$
$$x_{9} = 33642.761660559$$
$$x_{10} = 37900.4133297314$$
$$x_{11} = 54805.7513744735$$
$$x_{12} = 26150.0094308108$$
$$x_{13} = 44260.8826009333$$
$$x_{14} = 46374.9995735621$$
$$x_{15} = 50595.2338718172$$
$$x_{16} = 36837.4133555611$$
$$x_{17} = 45318.2910228145$$
$$x_{18} = 53753.9773110992$$
$$x_{19} = 29368.5106906478$$
$$x_{20} = 30438.7898799451$$
$$x_{21} = 20755.7822635151$$
$$x_{22} = 42143.8772835132$$
$$x_{23} = 40023.7925644568$$
$$x_{24} = 27224.1851278313$$
$$x_{25} = 25074.3951775674$$
$$x_{26} = 35773.4957936157$$
$$x_{27} = 48486.39889297$$
$$x_{28} = 28296.9963675366$$
$$x_{29} = 32575.8651669921$$
$$x_{30} = 38962.5292646053$$
$$x_{31} = 22918.5159269795$$
$$x_{32} = 23997.2607605555$$
$$x_{33} = 43202.7524097009$$