Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}$$
$$x_{2} = - \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -3$$
$$x_{2} = 3$$
$$\lim_{x \to -3^-}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
$$\lim_{x \to -3^+}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
- limits are equal, then skip the corresponding point
$$\lim_{x \to 3^-}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
$$\lim_{x \to 3^+}\left(\frac{2 \left(- \frac{2 x \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{x^{2} - 9} - \frac{- \frac{4 x^{2} \left(2 x - 1\right)}{x^{2} - 9} + 6 x - 1}{x^{2} - 9} + \frac{2 \left(\frac{x \left(2 x - 1\right)}{x^{2} - 9} - 1\right)}{2 x - 1}\right)}{2 x - 1}\right) = \infty$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}\right] \cup \left[- \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}, \infty\right)$$
Convex at the intervals
$$\left[- \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2} - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2}, - \frac{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}{2} + \frac{1}{2} + \frac{\sqrt{- \frac{140}{3} - 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}} - \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + \frac{35}{\sqrt{- \frac{70}{3} + \frac{1225}{72 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}} + 2 \sqrt[3]{\frac{1225 \sqrt{2706}}{96} + \frac{1147825}{1728}}}}}}{2}\right]$$