Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(- \frac{2 \left(2 + \frac{1}{x^{3}}\right)^{2}}{- 4 x + 8 + \frac{1}{x^{2}}} + \frac{3}{x^{4}}\right)}{- 4 x + 8 + \frac{1}{x^{2}}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -1.63420998642385$$
$$x_{2} = 0.941747907604632$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(\frac{2 \left(- \frac{2 \left(2 + \frac{1}{x^{3}}\right)^{2}}{- 4 x + 8 + \frac{1}{x^{2}}} + \frac{3}{x^{4}}\right)}{- 4 x + 8 + \frac{1}{x^{2}}}\right) = \infty$$
$$\lim_{x \to 0^+}\left(\frac{2 \left(- \frac{2 \left(2 + \frac{1}{x^{3}}\right)^{2}}{- 4 x + 8 + \frac{1}{x^{2}}} + \frac{3}{x^{4}}\right)}{- 4 x + 8 + \frac{1}{x^{2}}}\right) = \infty$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[-1.63420998642385, 0.941747907604632\right]$$
Convex at the intervals
$$\left(-\infty, -1.63420998642385\right] \cup \left[0.941747907604632, \infty\right)$$