Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \frac{\left(2 x - 5\right)^{2}}{x^{2} - 5 x + 16} - \frac{\left(2 x - 5\right)^{2}}{\left(\log{\left(x^{2} - 5 x + 16 \right)} - 1\right) \left(x^{2} - 5 x + 16\right)} + 2}{\left(\log{\left(x^{2} - 5 x + 16 \right)} - 1\right) \left(x^{2} - 5 x + 16\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -302803.884409885$$
$$x_{2} = 287512.940589365$$
$$x_{3} = -270247.628355553$$
$$x_{4} = 0.400491169567189$$
$$x_{5} = -296276.328570474$$
$$x_{6} = 268012.697108252$$
$$x_{7} = 294029.772233171$$
$$x_{8} = 4.59950883043281$$
$$x_{9} = 584251.519913711$$
$$x_{10} = -309339.173809517$$
$$x_{11} = -276742.129696829$$
$$x_{12} = -289756.707951521$$
$$x_{13} = -283245.234201485$$
$$x_{14} = 281004.331368723$$
$$x_{15} = 274504.170838722$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[0.400491169567189, 4.59950883043281\right]$$
Convex at the intervals
$$\left(-\infty, 0.400491169567189\right] \cup \left[4.59950883043281, \infty\right)$$