Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$14 \operatorname{asin}{\left(8^{x} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Numerical solution$$x_{1} = -15.9649870906711$$
$$x_{2} = -67.964987090676$$
$$x_{3} = -61.964987090676$$
$$x_{4} = -85.964987090676$$
$$x_{5} = -19.964987090676$$
$$x_{6} = -59.964987090676$$
$$x_{7} = -41.964987090676$$
$$x_{8} = -95.964987090676$$
$$x_{9} = -57.964987090676$$
$$x_{10} = -45.964987090676$$
$$x_{11} = -75.964987090676$$
$$x_{12} = -81.964987090676$$
$$x_{13} = -53.964987090676$$
$$x_{14} = -91.964987090676$$
$$x_{15} = -23.964987090676$$
$$x_{16} = -49.964987090676$$
$$x_{17} = -105.964987090676$$
$$x_{18} = -97.964987090676$$
$$x_{19} = -87.964987090676$$
$$x_{20} = -107.964987090676$$
$$x_{21} = -51.964987090676$$
$$x_{22} = -43.964987090676$$
$$x_{23} = -69.964987090676$$
$$x_{24} = -21.964987090676$$
$$x_{25} = -73.964987090676$$
$$x_{26} = -77.964987090676$$
$$x_{27} = -79.964987090676$$
$$x_{28} = -37.964987090676$$
$$x_{29} = -99.964987090676$$
$$x_{30} = -27.964987090676$$
$$x_{31} = -35.964987090676$$
$$x_{32} = -39.964987090676$$
$$x_{33} = -55.964987090676$$
$$x_{34} = -65.964987090676$$
$$x_{35} = -71.964987090676$$
$$x_{36} = -109.964987090676$$
$$x_{37} = -25.964987090676$$
$$x_{38} = -83.964987090676$$
$$x_{39} = -31.964987090676$$
$$x_{40} = -93.964987090676$$
$$x_{41} = -17.964987090676$$
$$x_{42} = -101.964987090676$$
$$x_{43} = -103.964987090676$$
$$x_{44} = -47.964987090676$$
$$x_{45} = -63.964987090676$$
$$x_{46} = -33.964987090676$$
$$x_{47} = -89.964987090676$$
$$x_{48} = -29.964987090676$$