Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(\delta\left(x + 2\right) - \frac{\operatorname{sign}{\left(x + 2 \right)}}{\left(\left(x + 2\right)^{2} + 1\right) \operatorname{atan}{\left(x + 2 \right)}} + \frac{\left(x + 2 + \frac{1}{\operatorname{atan}{\left(x + 2 \right)}}\right) \left|{x + 2}\right|}{\left(\left(x + 2\right)^{2} + 1\right)^{2} \operatorname{atan}{\left(x + 2 \right)}}\right)}{\operatorname{atan}{\left(x + 2 \right)}} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections