In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivative(6−2x)e−x2+6x=0Solve this equationThe roots of this equation
x1=52.4560161379821x2=34.5738300131898x3=74.392536498399x4=24.7238244881469x5=−16.5109382379574x6=−40.2278099160914x7=58.4337104086693x8=30.6208538623602x9=98.3566616903333x10=16.9992809268135x11=70.400998762587x12=−3.74301612101296x13=−60.1556753178057x14=−8.86545060149677x15=86.3720184879914x16=−78.1211308110769x17=−68.1381651356283x18=−46.2000176225044x19=11.5562499528413x20=−26.3368875035311x21=−56.1662052407992x22=84.375018132477x23=44.495785122687x24=82.3781688739501x25=−96.0050507000099x26=−48.1921992657937x27=−44.2084977857701x28=−76.1241933853779x29=76.3886510740335x30=72.3966457620089x31=54.4480034075534x32=92.3638248016984x33=46.4844728781857x34=90.366431024879x35=−7.04433982996113x36=−58.1607682345028x37=18.9046192283974x38=−64.1463989860564x39=56.4405897196054x40=−20.4235611844925x41=−28.3153447286813x42=32.5957583046983x43=22.7719971377255x44=48.4741540144396x45=94.361332630532x46=28.6498514574821x47=−22.3901348160467x48=−90.1055171244797x49=50.4647034274775x50=−74.1274147285816x51=−82.1154372504332x52=60.4273097814622x53=9.96154504225972x54=−72.1308075062542x55=80.3814824148947x56=62.4213396148336x57=−34.2645449807319x58=−100.004844848378x59=−88.1078338924457x60=−86.1102546220613x61=36.554507149414x62=68.4056178257571x63=−54.1720223810675x64=88.3691593312176x65=−24.3615719551025x66=−30.296381804162x67=−94.1011702664187x68=20.8309297171705x69=64.4157579453486x70=−70.134385766936x71=78.3849716980399x72=96.3589472776468x73=−62.1508948593432x74=−80.1182155582791x75=−50.1849682625092x76=−84.1127864691674x77=42.5082410274504x78=−66.1421630415863x79=26.6837303756218x80=−5.3115816730434x81=15.125084358924x82=−32.2795629354021x83=−38.2388692669542x84=66.4105280865885x85=13.2997190058202x86=−98.0049465224685x87=−18.4631983204608x88=−12.6430797877549x89=−14.5695229622524x90=100.35446952839x91=38.5373529142981x92=40.5220226949901x93=−36.2510541282376x94=−10.7381124092375x95=−92.1032979124459x96=−52.1782609089954x97=−42.2177273205401The values of the extrema at the points:
(52.45601613798206, 4.66496923933846e-1059)
(34.573830013189806, 9.06887558477286e-430)
(74.39253649839898, 2.26774929948687e-2210)
(24.72382448814687, 9.00372511156435e-202)
(-16.51093823795736, 3.82697295547156e-162)
(-40.22780991609136, 2.32845509303339e-808)
(58.433710408669306, 2.32683529737887e-1331)
(30.62085386236018, 3.80510054798218e-328)
(98.35666169033328, 8.23051204652814e-3946)
(16.999280926813473, 6.2470612781032e-82)
(70.40099876258702, 9.00697253959946e-1970)
(-3.743016121012964, 1.45222241008765e-16)
(-60.155675317805745, 4.61956681914035e-1729)
(-8.865450601496772, 5.81835407692524e-58)
(86.37201848799135, 1.49270306663335e-3015)
(-78.12113081107688, 9.41756375263768e-2855)
(-68.13816513562826, 1.26257737197309e-2194)
(-46.200017622504404, 4.33813010122174e-1048)
(11.556249952841327, 1.30078684705939e-28)
(-26.33688750353106, 1.3546132821367e-370)
(-56.166205240799194, 3.98183781624933e-1517)
(84.37501813247697, 1.13975236821269e-2872)
(44.495785122686975, 1.24997836024491e-744)
(82.37816887395014, 2.91936279442467e-2733)
(-96.00505070000989, 8.99727258359308e-4254)
(-48.19219926579367, 6.00633580457691e-1135)
(-44.20849778577015, 1.05102560824248e-964)
(-76.12419338537785, 8.87407127801895e-2716)
(76.38865107403352, 6.99132970556868e-2336)
(72.39664576200886, 2.46756332056428e-2088)
(54.448003407553365, 2.37610346767507e-1146)
(92.36382480169839, 4.77867846119486e-3465)
(46.48447287818566, 5.02901719053532e-818)
(90.36643102487902, 9.66545289971107e-3312)
(-7.044339829961129, 1.23941699039713e-40)
(-58.16076823450285, 2.34167084004498e-1621)
(18.904619228397404, 1.12423978105435e-106)
(-64.14639898605638, 6.78666738382049e-1955)
(56.44058971960544, 4.05978677773672e-1237)
(-20.42356118449253, 4.23879185988845e-235)
(-28.315344728681275, 1.04090837282703e-422)
(32.59575830469832, 3.20807294635825e-377)
(22.771997137725517, 1.34615801831863e-166)
(48.4741540144396, 6.78676845170831e-895)
(94.361332630532, 7.92566951610389e-3622)
(28.64985145748212, 1.51303328427346e-282)
(-22.390134816046736, 8.64624205746604e-277)
(-90.1055171244797, 1.46993140115752e-3761)
(50.4647034274775, 3.07220090158847e-975)
(-74.12741472858161, 2.80509444884618e-2580)
(-82.11543725043317, 4.00398032601546e-3143)
(60.42730978146217, 4.47358075843085e-1429)
(9.961545042259718, 7.26757227587269e-18)
(-72.13080750625416, 2.97448557359762e-2448)
(80.38148241489469, 2.50845187222513e-2597)
(62.42133961483356, 2.88518972251391e-1530)
(-34.26454498073191, 6.71768214028047e-600)
(-100.00484484837843, 1.10927417614261e-4604)
(-88.10783389244567, 9.71924937872794e-3602)
(-86.11025462206133, 2.15581007088375e-3445)
(36.55450714941399, 8.59692993335301e-486)
(68.4056178257571, 1.10287371559859e-1854)
(-54.17202238106753, 2.27129133157162e-1416)
(88.3691593312176, 6.55808820525051e-3162)
(-24.361571955102548, 5.91079352047288e-322)
(-30.296381804161957, 2.68218886710039e-478)
(-94.1011702664187, 1.26915120004191e-4091)
(20.830929717170516, 6.73240863936905e-135)
(64.4157579453486, 6.24201497935865e-1635)
(-70.13438576693599, 1.0580728063907e-2319)
(78.3849716980399, 7.23041414534983e-2465)
(96.3589472776468, 4.40960410378626e-3782)
(-62.150894859343246, 3.05711033809837e-1840)
(-80.1182155582791, 3.35270039977046e-2997)
(-50.18496826250919, 2.78957661548699e-1225)
(-84.11278646916743, 1.60409496633871e-3292)
(42.50824102745043, 1.04210592628642e-674)
(-66.14216304158627, 5.0540389078208e-2073)
(26.683730375621803, 2.0164485357226e-240)
(-5.311581673043402, 8.06398299980979e-27)
(15.125084358924044, 1.14732697654718e-60)
(-32.27956293540211, 2.31783607657345e-537)
(-38.23886926695423, 2.12911187714179e-735)
(66.41052808658847, 4.53010387002048e-1743)
(13.299719005820185, 6.86851138871952e-43)
(-98.0049465224685, 1.72458195798904e-4427)
(-18.463198320460812, 6.96140398784859e-197)
(-12.643079787754933, 4.3073347799597e-103)
(-14.569522962252366, 7.03227355521173e-131)
(100.35446952839004, 5.15388258319175e-4113)
(38.5373529142981, 2.73306455268495e-545)
(40.522022694990106, 2.91406617551793e-608)
(-36.25105412823759, 6.53009672901164e-666)
(-10.738112409237461, 8.74506706754012e-79)
(-92.1032979124459, 7.45746972847133e-3925)
(-52.17826090899544, 4.34602101790554e-1319)
(-42.217727320540064, 8.54155661846103e-885)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
The function has no maxima
Decreasing at the entire real axis