Mister Exam

Other calculators

Graphing y = exp(-0.7x)-0.3sqrt(x)+1

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
        -7*x              
        ----       ___    
         10    3*\/ x     
f(x) = e     - ------- + 1
                  10      
$$f{\left(x \right)} = \left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1$$
f = -3*sqrt(x)/10 + exp(-7*x/10) + 1
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1 = 0$$
Solve this equation
The points of intersection with the axis X:

Numerical solution
$$x_{1} = 11.1203627640401$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to exp(-7*x/10) - 3*sqrt(x)/10 + 1.
$$\left(- \frac{3 \sqrt{0}}{10} + e^{- 0}\right) + 1$$
The result:
$$f{\left(0 \right)} = 2$$
The point:
(0, 2)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$- \frac{7 e^{- \frac{7 x}{10}}}{10} - \frac{3}{20 \sqrt{x}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{98 e^{- \frac{7 x}{10}} + \frac{15}{x^{\frac{3}{2}}}}{200} = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1\right) = \infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1\right) = -\infty$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of exp(-7*x/10) - 3*sqrt(x)/10 + 1, divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1}{x}\right) = -\infty$$
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1 = - \frac{3 \sqrt{- x}}{10} + e^{\frac{7 x}{10}} + 1$$
- No
$$\left(- \frac{3 \sqrt{x}}{10} + e^{- \frac{7 x}{10}}\right) + 1 = \frac{3 \sqrt{- x}}{10} - e^{\frac{7 x}{10}} - 1$$
- No
so, the function
not is
neither even, nor odd