Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$4 \left(\sin^{2}{\left(2 x \right)} - \cos{\left(2 x \right)}\right) e^{\cos{\left(2 x \right)} + 1} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - i \log{\left(- e^{- \frac{i \operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}} \right)}$$
$$x_{2} = - i \log{\left(- e^{\frac{i \operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}} \right)}$$
$$x_{3} = - \frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}$$
$$x_{4} = \frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[- \pi + \operatorname{atan}{\left(\frac{\sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2} \right)}}{\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2} \right)}} \right)}, - \frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}\right] \cup \left[\frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2}, \infty\right)$$
Convex at the intervals
$$\left(-\infty, - \pi + \operatorname{atan}{\left(\frac{\sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2} \right)}}{\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{2}}{\sqrt{-1 + \sqrt{5}}} \right)}}{2} \right)}} \right)}\right]$$