Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\left(-2 + \frac{2 \left(2 x + 1\right)}{x + 1} + \frac{2 \left(2 x + 1\right)}{x} + \frac{\left(2 x + 1\right)^{2}}{x^{2} \left(x + 1\right)^{2}}\right) e^{\frac{1}{x \left(x + 1\right)}}}{x^{2} \left(x + 1\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{1}{2} - \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}$$
$$x_{2} = - \frac{1}{2} + \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -1$$
$$x_{2} = 0$$
$$\lim_{x \to -1^-}\left(\frac{\left(-2 + \frac{2 \left(2 x + 1\right)}{x + 1} + \frac{2 \left(2 x + 1\right)}{x} + \frac{\left(2 x + 1\right)^{2}}{x^{2} \left(x + 1\right)^{2}}\right) e^{\frac{1}{x \left(x + 1\right)}}}{x^{2} \left(x + 1\right)^{2}}\right) = \infty$$
$$\lim_{x \to -1^+}\left(\frac{\left(-2 + \frac{2 \left(2 x + 1\right)}{x + 1} + \frac{2 \left(2 x + 1\right)}{x} + \frac{\left(2 x + 1\right)^{2}}{x^{2} \left(x + 1\right)^{2}}\right) e^{\frac{1}{x \left(x + 1\right)}}}{x^{2} \left(x + 1\right)^{2}}\right) = 0$$
- the limits are not equal, so
$$x_{1} = -1$$
- is an inflection point
$$\lim_{x \to 0^-}\left(\frac{\left(-2 + \frac{2 \left(2 x + 1\right)}{x + 1} + \frac{2 \left(2 x + 1\right)}{x} + \frac{\left(2 x + 1\right)^{2}}{x^{2} \left(x + 1\right)^{2}}\right) e^{\frac{1}{x \left(x + 1\right)}}}{x^{2} \left(x + 1\right)^{2}}\right) = 0$$
$$\lim_{x \to 0^+}\left(\frac{\left(-2 + \frac{2 \left(2 x + 1\right)}{x + 1} + \frac{2 \left(2 x + 1\right)}{x} + \frac{\left(2 x + 1\right)^{2}}{x^{2} \left(x + 1\right)^{2}}\right) e^{\frac{1}{x \left(x + 1\right)}}}{x^{2} \left(x + 1\right)^{2}}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 0$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{1}{2} - \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}\right] \cup \left[- \frac{1}{2} + \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}, \infty\right)$$
Convex at the intervals
$$\left[- \frac{1}{2} - \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}, - \frac{1}{2} + \frac{\sqrt{-9 + 6 \sqrt{3}}}{6}\right]$$