Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\frac{\left(x + 4\right) \left(\frac{2 \sqrt[3]{x + 6} \operatorname{sign}{\left(x \right)}}{\sqrt[3]{\left|{x}\right|}} + \frac{\left|{x}\right|^{\frac{2}{3}}}{\left(x + 6\right)^{\frac{2}{3}}}\right)}{3 \left(x + 6\right)} - \frac{\left(x + 4\right) \left|{x}\right|^{\frac{2}{3}}}{\left(x + 6\right)^{\frac{5}{3}}} + \frac{2 \left(x + 2\right) \left|{x}\right|^{\frac{2}{3}}}{x \left(x + 6\right)^{\frac{2}{3}}} - \frac{2 \left(x + 4\right) \left|{x}\right|^{\frac{2}{3}}}{x \left(x + 6\right)^{\frac{2}{3}}}}{x} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 20926.0478841525$$
$$x_{2} = 40442.1733273205$$
$$x_{3} = 30263.2836749993$$
$$x_{4} = 22624.568071242$$
$$x_{5} = 38745.9717821731$$
$$x_{6} = 23473.6471222795$$
$$x_{7} = 42138.2945633354$$
$$x_{8} = 25171.5046699387$$
$$x_{9} = 29414.8026953006$$
$$x_{10} = 35353.2812662006$$
$$x_{11} = 31960.1051794607$$
$$x_{12} = 36201.4940552428$$
$$x_{13} = 37049.6788385142$$
$$x_{14} = 24322.6224640784$$
$$x_{15} = 26020.3029224314$$
$$x_{16} = 39594.0832417035$$
$$x_{17} = 26869.0252348779$$
$$x_{18} = 31111.7165515951$$
$$x_{19} = 19226.9372418016$$
$$x_{20} = 28566.2692968941$$
$$x_{21} = 42986.3280499478$$
$$x_{22} = 41290.2433624204$$
$$x_{23} = 37897.837506221$$
$$x_{24} = 33656.7631513868$$
$$x_{25} = 21775.3730730961$$
$$x_{26} = 20076.5758260417$$
$$x_{27} = 27717.678631792$$
$$x_{28} = 32808.4530117694$$
$$x_{29} = 34505.0383942055$$
$$x_{30} = 43834.3448550658$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[29414.8026953006, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 19226.9372418016\right]$$