Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\cot{\left(\frac{x + 1}{2} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = -1 + \pi$$
Numerical solution$$x_{1} = 77.5398163397448$$
$$x_{2} = 96.3893722612836$$
$$x_{3} = -54.4070751110265$$
$$x_{4} = 71.2566310325652$$
$$x_{5} = -60.6902604182061$$
$$x_{6} = 39.8407044966673$$
$$x_{7} = -85.8230016469244$$
$$x_{8} = -79.5398163397448$$
$$x_{9} = 102.672557568463$$
$$x_{10} = -10.4247779607694$$
$$x_{11} = -35.5575191894877$$
$$x_{12} = 90.106186954104$$
$$x_{13} = -48.1238898038469$$
$$x_{14} = 64.9734457253857$$
$$x_{15} = -73.2566310325652$$
$$x_{16} = -29.2743338823081$$
$$x_{17} = 58.6902604182061$$
$$x_{18} = 8.42477796076938$$
$$x_{19} = -98.3893722612836$$
$$x_{20} = 52.4070751110265$$
$$x_{21} = -22.9911485751286$$
$$x_{22} = 46.1238898038469$$
$$x_{23} = 2.14159265358979$$
$$x_{24} = -66.9734457253857$$
$$x_{25} = -16.707963267949$$
$$x_{26} = -92.106186954104$$
$$x_{27} = -41.8407044966673$$
$$x_{28} = 83.8230016469244$$
$$x_{29} = 27.2743338823081$$
$$x_{30} = 14.707963267949$$
$$x_{31} = 20.9911485751286$$
$$x_{32} = -4.14159265358979$$
$$x_{33} = 33.5575191894877$$