Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \pi^{2} \left(3 \cot{\left(\pi x \right)} - \frac{\cot^{2}{\left(\pi x \right)} + 1}{\cot{\left(\pi x \right)} - 1}\right) \left(\cot^{2}{\left(\pi x \right)} + 1\right)}{9 \left(\cot{\left(\pi x \right)} - 1\right)^{\frac{2}{3}}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = \frac{\operatorname{acot}{\left(\frac{3}{4} - \frac{\sqrt{17}}{4} \right)}}{\pi}$$
$$x_{2} = \frac{\operatorname{acot}{\left(\frac{3}{4} + \frac{\sqrt{17}}{4} \right)}}{\pi}$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, \frac{\operatorname{acot}{\left(\frac{3}{4} + \frac{\sqrt{17}}{4} \right)}}{\pi}\right]$$
Convex at the intervals
$$\left[\frac{\operatorname{acot}{\left(\frac{3}{4} + \frac{\sqrt{17}}{4} \right)}}{\pi}, \infty\right)$$