Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)} = \left(- i\right)^{\left\langle -1, 1\right\rangle}$$
Let's take the limitso,
equation of the horizontal asymptote on the left:
$$y = \left(- i\right)^{\left\langle -1, 1\right\rangle}$$
True
Let's take the limitso,
equation of the horizontal asymptote on the right:
$$y = \lim_{x \to \infty} \cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)}$$