Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • -3x+5
  • 3/2x^2-x^3
  • 3x^2-12x
  • |2x-4|+x
  • Identical expressions

  • (cot(sqrt(x)))^cos(x)
  • ( cotangent of ( square root of (x))) to the power of co sinus of e of (x)
  • (cot(√(x)))^cos(x)
  • (cot(sqrt(x)))cos(x)
  • cotsqrtxcosx
  • cotsqrtx^cosx
  • Similar expressions

  • (cot(sqrt(x)))^cosx

Graphing y = (cot(sqrt(x)))^cos(x)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
          cos(x)/  ___\
f(x) = cot      \\/ x /
f(x)=cotcos(x)(x)f{\left(x \right)} = \cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)}
f = cot(sqrt(x))^cos(x)
The graph of the function
02468-8-6-4-2-10100200
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
cotcos(x)(x)=0\cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)} = 0
Solve this equation
The points of intersection with the axis X:

Numerical solution
x1=9.86960440108936x_{1} = 9.86960440108936
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to cot(sqrt(x))^cos(x).
cotcos(0)(0)\cot^{\cos{\left(0 \right)}}{\left(\sqrt{0} \right)}
The result:
f(0)=~f{\left(0 \right)} = \tilde{\infty}
sof doesn't intersect Y
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limxcotcos(x)(x)=(i)1,1\lim_{x \to -\infty} \cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)} = \left(- i\right)^{\left\langle -1, 1\right\rangle}
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=(i)1,1y = \left(- i\right)^{\left\langle -1, 1\right\rangle}
True

Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=limxcotcos(x)(x)y = \lim_{x \to \infty} \cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)}
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of cot(sqrt(x))^cos(x), divided by x at x->+oo and x ->-oo
limx(cotcos(x)(x)x)=0\lim_{x \to -\infty}\left(\frac{\cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)}}{x}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
True

Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx(cotcos(x)(x)x)y = x \lim_{x \to \infty}\left(\frac{\cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)}}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
cotcos(x)(x)=cotcos(x)(x)\cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)} = \cot^{\cos{\left(x \right)}}{\left(\sqrt{- x} \right)}
- No
cotcos(x)(x)=cotcos(x)(x)\cot^{\cos{\left(x \right)}}{\left(\sqrt{x} \right)} = - \cot^{\cos{\left(x \right)}}{\left(\sqrt{- x} \right)}
- No
so, the function
not is
neither even, nor odd