In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- \sin{\left(x \right)} - \frac{1}{\left(x + 2\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -47.1233986739056$$
$$x_{2} = -28.2728851617707$$
$$x_{3} = -113.097416549203$$
$$x_{4} = -62.8321233021027$$
$$x_{5} = -56.5490038319963$$
$$x_{6} = 25.1313827392445$$
$$x_{7} = 100.530869790739$$
$$x_{8} = -207.345138852364$$
$$x_{9} = -50.2659117160171$$
$$x_{10} = -21.9886457315293$$
$$x_{11} = -34.5565757313723$$
$$x_{12} = 59.6905231805324$$
$$x_{13} = -91.1060610077762$$
$$x_{14} = -232.477875190928$$
$$x_{15} = 75.398056754043$$
$$x_{16} = 50.265116377299$$
$$x_{17} = 94.2476716584669$$
$$x_{18} = 31.4150309312823$$
$$x_{19} = 40.8412493451764$$
$$x_{20} = 34.5582674086562$$
$$x_{21} = 69.1148406458093$$
$$x_{22} = -81.6815664946825$$
$$x_{23} = -53.4066967027604$$
$$x_{24} = -59.6899599493029$$
$$x_{25} = -12.575312299732$$
$$x_{26} = -100.531067918762$$
$$x_{27} = -84.8228558663697$$
$$x_{28} = 97.3894734936108$$
$$x_{29} = -75.3984093069834$$
$$x_{30} = -94.2478971210017$$
$$x_{31} = 28.275424869352$$
$$x_{32} = -9.40654771996448$$
$$x_{33} = 65.973662155987$$
$$x_{34} = -72.2564284379647$$
$$x_{35} = 53.4074008460461$$
$$x_{36} = 9.43242911933225$$
$$x_{37} = 62.8316151543322$$
$$x_{38} = 37.6984773128278$$
$$x_{39} = -18.8530767308253$$
$$x_{40} = -87.9647296197069$$
$$x_{41} = 47.1243041918641$$
$$x_{42} = -31.4170821182773$$
$$x_{43} = -25.1346096547112$$
$$x_{44} = 3.17888571340257$$
$$x_{45} = 56.5483760418661$$
$$x_{46} = -6.33638979731349$$
$$x_{47} = 6.26855828560138$$
$$x_{48} = -69.1152603812606$$
$$x_{49} = -65.9732013801725$$
$$x_{50} = -15.7026373591581$$
$$x_{51} = -43.9828645065662$$
$$x_{52} = 78.5399705016502$$
$$x_{53} = 15.7111511860453$$
$$x_{54} = 72.2568123866733$$
$$x_{55} = -0.402800003627171$$
$$x_{56} = 138.230025904788$$
$$x_{57} = 43.9818241867606$$
$$x_{58} = -78.5396456422656$$
$$x_{59} = 21.9928857168367$$
$$x_{60} = -40.8400416079017$$
$$x_{61} = 81.6812661883011$$
$$x_{62} = 84.8231343035915$$
$$x_{63} = -97.3892623604415$$
$$x_{64} = 12.5616545452321$$
$$x_{65} = 91.1063023105434$$
$$x_{66} = -37.6998964752852$$
$$x_{67} = 87.9644707461921$$
$$x_{68} = -213.628322772239$$
$$x_{69} = 18.8472549956737$$
The values of the extrema at the points:
(-47.1233986739056, -1.02216133064689)
(-28.27288516177066, -1.03806100560322)
(-113.097416549203, 0.990998887321633)
(-62.832123302102694, 0.983561280342805)
(-56.549003831996316, 0.981667803073048)
(25.131382739244504, 1.03685676377858)
(100.53086979073908, 1.00975315569019)
(-207.34513885236422, 0.995130149837809)
(-50.26591171601708, 0.979281351760373)
(-21.988645731529303, -1.05002526968385)
(-34.556575731372334, -1.03071531596974)
(59.69052318053242, -0.983790020279857)
(-91.10606100777616, -1.01122257321184)
(-232.47787519092785, 0.995661188563062)
(75.39805675404298, 1.01292020708967)
(50.26511637729896, 1.01913315356719)
(94.2476716584669, 1.01038985589968)
(31.415030931282306, 1.02992625087889)
(40.84124934517639, -0.976657861892235)
(34.55826740865621, -0.972646126194554)
(69.11484064580931, 1.01406174295942)
(-81.68156649468251, 0.987450033523323)
(-53.40669670276039, -1.0194526469041)
(-59.68995994930291, -1.0173339935876)
(-12.575312299732007, 0.905400168174768)
(-100.5310679187621, 0.989850911556931)
(-84.82285586636974, -1.0120739511994)
(97.38947349361078, -0.989938567193083)
(-75.39840930698344, 0.986375709311464)
(-94.24789712100169, 0.989159637583594)
(28.27542486935203, -0.966969315145298)
(-9.406547719964479, -1.1348495033844)
(65.97366215598699, -0.985288396118436)
(-72.25642843796469, -1.01423355243656)
(53.40740084604605, -0.981951816468838)
(9.43242911933225, -0.912500255507736)
(62.831615154332184, 1.01542454499601)
(37.69847731282785, 1.02518968171621)
(-18.85307673082531, 0.940657455486541)
(-87.96472961970693, 0.988367313065648)
(47.124304191864084, -0.979643391714133)
(-31.417082118277293, 0.96600547813237)
(-25.13460965471122, 0.956772973628831)
(3.1788857134025665, -0.806212964796512)
(56.54837604186615, 1.01707985048105)
(-6.336389797313493, 0.767978399731548)
(6.268558285601385, 1.12083309486718)
(-69.11526038126055, 0.985100234310236)
(-65.9732013801725, -1.01563151552024)
(-15.702637359158084, -1.07296446913929)
(-43.98286450656618, 0.976180597280533)
(78.53997050165019, -0.987583792856844)
(15.711151186045273, -0.94353331485599)
(72.25681238667326, -0.986533205654984)
(-0.40280000362717144, 1.54606268093042)
(138.2300259047878, 1.00713113908542)
(43.98182418676056, 1.02174761168671)
(-78.53964564226563, -1.01306510993769)
(21.99288571683669, -0.95831946965468)
(-40.84004160790166, -1.02574640564293)
(81.68126618830107, 1.01195009578945)
(84.82313430359152, -0.988482323611458)
(-97.38926236044152, -1.01048335419721)
(12.561654545232138, 1.06866239424047)
(91.10630231054344, -0.989259581847076)
(-37.69989647528518, 0.971988406465791)
(87.96447074619208, 1.01111549153818)
(-213.62832277223944, 0.995274734309408)
(18.847254995673673, 1.04796529878104)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
Minima of the function at points:
$$x_{1} = -47.1233986739056$$
$$x_{2} = -28.2728851617707$$
$$x_{3} = -21.9886457315293$$
$$x_{4} = -34.5565757313723$$
$$x_{5} = 59.6905231805324$$
$$x_{6} = -91.1060610077762$$
$$x_{7} = 40.8412493451764$$
$$x_{8} = 34.5582674086562$$
$$x_{9} = -53.4066967027604$$
$$x_{10} = -59.6899599493029$$
$$x_{11} = -84.8228558663697$$
$$x_{12} = 97.3894734936108$$
$$x_{13} = 28.275424869352$$
$$x_{14} = -9.40654771996448$$
$$x_{15} = 65.973662155987$$
$$x_{16} = -72.2564284379647$$
$$x_{17} = 53.4074008460461$$
$$x_{18} = 9.43242911933225$$
$$x_{19} = 47.1243041918641$$
$$x_{20} = 3.17888571340257$$
$$x_{21} = -65.9732013801725$$
$$x_{22} = -15.7026373591581$$
$$x_{23} = 78.5399705016502$$
$$x_{24} = 15.7111511860453$$
$$x_{25} = 72.2568123866733$$
$$x_{26} = -78.5396456422656$$
$$x_{27} = 21.9928857168367$$
$$x_{28} = -40.8400416079017$$
$$x_{29} = 84.8231343035915$$
$$x_{30} = -97.3892623604415$$
$$x_{31} = 91.1063023105434$$
Maxima of the function at points:
$$x_{31} = -113.097416549203$$
$$x_{31} = -62.8321233021027$$
$$x_{31} = -56.5490038319963$$
$$x_{31} = 25.1313827392445$$
$$x_{31} = 100.530869790739$$
$$x_{31} = -207.345138852364$$
$$x_{31} = -50.2659117160171$$
$$x_{31} = -232.477875190928$$
$$x_{31} = 75.398056754043$$
$$x_{31} = 50.265116377299$$
$$x_{31} = 94.2476716584669$$
$$x_{31} = 31.4150309312823$$
$$x_{31} = 69.1148406458093$$
$$x_{31} = -81.6815664946825$$
$$x_{31} = -12.575312299732$$
$$x_{31} = -100.531067918762$$
$$x_{31} = -75.3984093069834$$
$$x_{31} = -94.2478971210017$$
$$x_{31} = 62.8316151543322$$
$$x_{31} = 37.6984773128278$$
$$x_{31} = -18.8530767308253$$
$$x_{31} = -87.9647296197069$$
$$x_{31} = -31.4170821182773$$
$$x_{31} = -25.1346096547112$$
$$x_{31} = 56.5483760418661$$
$$x_{31} = -6.33638979731349$$
$$x_{31} = 6.26855828560138$$
$$x_{31} = -69.1152603812606$$
$$x_{31} = -43.9828645065662$$
$$x_{31} = -0.402800003627171$$
$$x_{31} = 138.230025904788$$
$$x_{31} = 43.9818241867606$$
$$x_{31} = 81.6812661883011$$
$$x_{31} = 12.5616545452321$$
$$x_{31} = -37.6998964752852$$
$$x_{31} = 87.9644707461921$$
$$x_{31} = -213.628322772239$$
$$x_{31} = 18.8472549956737$$
Decreasing at intervals
$$\left[97.3894734936108, \infty\right)$$
Increasing at intervals
$$\left(-\infty, -97.3892623604415\right]$$