Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$- 6 \left(6 x^{2} \cos{\left(3 x^{2} \right)} + \sin{\left(3 x^{2} \right)}\right) = 0$$
Solve this equationThe roots of this equation
$$x_{1} = -69.8678137362531$$
$$x_{2} = 2.40191871479273$$
$$x_{3} = -85.7551445152571$$
$$x_{4} = 76.4316135434824$$
$$x_{5} = 75.6881378653139$$
$$x_{6} = 54.8172727490775$$
$$x_{7} = 52.1846457522451$$
$$x_{8} = 22.1969944045103$$
$$x_{9} = 98.1727185535889$$
$$x_{10} = -101.130879998117$$
$$x_{11} = -6.97823953408788$$
$$x_{12} = 61.6676407995246$$
$$x_{13} = -12.2158103839531$$
$$x_{14} = -72.6453857432282$$
$$x_{15} = 82.0737367025503$$
$$x_{16} = 24.7826845646599$$
$$x_{17} = 2.6105429490573$$
$$x_{18} = 43.6626060960023$$
$$x_{19} = -66.8969262930126$$
$$x_{20} = 5.46324002172655$$
$$x_{21} = -89.0793997015776$$
$$x_{22} = -8.83271926754254$$
$$x_{23} = -45.4142665251604$$
$$x_{24} = 14.6696746701966$$
$$x_{25} = -41.7499743214192$$
$$x_{26} = 6.18256937073897$$
$$x_{27} = -11.5096007578645$$
$$x_{28} = -22.8479339480409$$
$$x_{29} = 32.8980048102268$$
$$x_{30} = 34.0400372847106$$
$$x_{31} = 22.5480491479443$$
$$x_{32} = -29.8260688357005$$
$$x_{33} = -7.55468331206371$$
$$x_{34} = -28.9169035525869$$
$$x_{35} = 0$$
$$x_{36} = -1.26699675319841$$
$$x_{37} = 0.782431509921076$$
$$x_{38} = -79.8686665208779$$
$$x_{39} = -79.1839336396597$$
$$x_{40} = 2.17350961003933$$
$$x_{41} = -49.7498887908243$$
$$x_{42} = 32.3846939231418$$
$$x_{43} = -97.9217257983412$$
$$x_{44} = -23.7689540620825$$
$$x_{45} = -96.0592589414969$$
$$x_{46} = 24.2487426370705$$
$$x_{47} = -8.15462322537082$$
$$x_{48} = -43.6506125221568$$
$$x_{49} = 64.1642983755252$$
$$x_{50} = 1.26699675319841$$
$$x_{51} = 5.16774784826217$$
$$x_{52} = -4.40182028923456$$
$$x_{53} = 20.2995657888476$$
$$x_{54} = 3.31671887860803$$
$$x_{55} = 53.5318234159474$$
$$x_{56} = 56.269012907544$$
$$x_{57} = -19.7504741776293$$
$$x_{58} = -5.46324002172655$$
$$x_{59} = -3.76046478766038$$
$$x_{60} = 94.1432763442015$$
$$x_{61} = -4.15715938453264$$
$$x_{62} = -93.8870885345791$$
$$x_{63} = -25.8984577604517$$
$$x_{64} = -12.8426613732715$$
$$x_{65} = -1.91840470339041$$
$$x_{66} = 85.9259352130434$$
$$x_{67} = 6.09729508962876$$
$$x_{68} = 10.9978078035033$$
$$x_{69} = 6.59241812112581$$
$$x_{70} = 38.7447767660209$$
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[85.9259352130434, \infty\right)$$
Convex at the intervals
$$\left(-\infty, -96.0592589414969\right]$$