Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d n^{2}} f{\left(n \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d n^{2}} f{\left(n \right)} = $$
the second derivative$$- \frac{\pi \left(2 \sin{\left(\frac{\pi}{n} \right)} + \frac{\pi \cos{\left(\frac{\pi}{n} \right)}}{n}\right)}{n^{3}} = 0$$
Solve this equationThe roots of this equation
$$n_{1} = 4380.39633644888$$
$$n_{2} = -5436.56807965388$$
$$n_{3} = -5218.56886424101$$
$$n_{4} = 9394.8859895067$$
$$n_{5} = 6560.39745368646$$
$$n_{6} = 6996.45020000492$$
$$n_{7} = 9612.9339458279$$
$$n_{8} = -3474.89721302176$$
$$n_{9} = -10887.4737039524$$
$$n_{10} = 6342.37561040122$$
$$n_{11} = -4346.64344739395$$
$$n_{12} = -5872.5823597212$$
$$n_{13} = 4816.34564707535$$
$$n_{14} = -4564.61203031467$$
$$n_{15} = -4128.68563587176$$
$$n_{16} = 6124.35721793024$$
$$n_{17} = -10451.3685950099$$
$$n_{18} = -10015.2665666667$$
$$n_{19} = -3257.0056190349$$
$$n_{20} = -8925.02793958268$$
$$n_{21} = 9176.839092469$$
$$n_{22} = 8740.74879365927$$
$$n_{23} = 9830.9828908882$$
$$n_{24} = 3944.48943650256$$
$$n_{25} = 8086.62349887863$$
$$n_{26} = 8522.70557092197$$
$$n_{27} = -9143.07351655573$$
$$n_{28} = 8304.66376767566$$
$$n_{29} = -8706.98359840237$$
$$n_{30} = -7616.78414851866$$
$$n_{31} = 10049.0327602721$$
$$n_{32} = -4782.5899063193$$
$$n_{33} = -8052.85899460141$$
$$n_{34} = 7650.54809009149$$
$$n_{35} = 6778.42241419512$$
$$n_{36} = -10233.3171711293$$
$$n_{37} = 10703.1873490195$$
$$n_{38} = 3072.8755443295$$
$$n_{39} = 2419.48327847189$$
$$n_{40} = -6308.61411253876$$
$$n_{41} = 3508.64084297269$$
$$n_{42} = -3039.13980770151$$
$$n_{43} = -9797.2168363785$$
$$n_{44} = -7398.74962920908$$
$$n_{45} = -2603.51168596997$$
$$n_{46} = 5470.32688127597$$
$$n_{47} = 8958.79333213496$$
$$n_{48} = 7432.51325143022$$
$$n_{49} = 4162.43674859374$$
$$n_{50} = -8488.9405883437$$
$$n_{51} = 2201.79505915415$$
$$n_{52} = -5000.57585593862$$
$$n_{53} = -2821.3058066811$$
$$n_{54} = 3290.74569867703$$
$$n_{55} = 5252.32677234155$$
$$n_{56} = -5654.57278235293$$
$$n_{57} = 10921.2403729465$$
$$n_{58} = -3692.80999602316$$
$$n_{59} = -3910.74040550788$$
$$n_{60} = -9579.16804001135$$
$$n_{61} = -6090.5962870989$$
$$n_{62} = -6962.68730875067$$
$$n_{63} = 10267.0834950414$$
$$n_{64} = 3726.55656556972$$
$$n_{65} = -7180.71728118609$$
$$n_{66} = 4598.36644728847$$
$$n_{67} = 2637.23522503622$$
$$n_{68} = -7834.8206575933$$
$$n_{69} = 7214.48055455131$$
$$n_{70} = -2385.7685054801$$
$$n_{71} = 7868.58489225002$$
$$n_{72} = -10669.4207880326$$
$$n_{73} = -6526.63544462699$$
$$n_{74} = 5906.34265924616$$
$$n_{75} = -8270.89901480149$$
$$n_{76} = 10485.1350411652$$
$$n_{77} = -6744.65994267352$$
$$n_{78} = 5034.3327511695$$
$$n_{79} = 5688.33237619656$$
$$n_{80} = 2855.0361522398$$
$$n_{81} = -9361.12024288468$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$n_{1} = 0$$
True
True
- the limits are not equal, so
$$n_{1} = 0$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis