Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\frac{2 \left(\left(x - 11\right) \left(\frac{1}{x - 10} + \frac{1}{x - 12}\right) + \frac{x - 11}{x - 10} - 1 + \frac{x - 11}{x - 12}\right) \operatorname{asin}{\left(x - 11 \right)}}{\left(x - 12\right) \left(x - 10\right)} - \frac{4 \left(x - 11\right)}{\sqrt{1 - \left(x - 11\right)^{2}} \left(x - 12\right) \left(x - 10\right)} + \frac{x - 11}{\left(1 - \left(x - 11\right)^{2}\right)^{\frac{3}{2}}}}{\left(x - 12\right) \left(x - 10\right)} = 0$$
Solve this equationSolutions are not found,
maybe, the function has no inflections