In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- \frac{2 x \operatorname{atan}{\left(x - 1 \right)}}{\left(x^{2} - 1\right)^{2}} + \frac{1}{\left(x^{2} - 1\right) \left(\left(x - 1\right)^{2} + 1\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 41732.6951021162$$
$$x_{2} = 40037.4837685001$$
$$x_{3} = 27323.3984162899$$
$$x_{4} = -28881.1962419616$$
$$x_{5} = 20542.5636397183$$
$$x_{6} = -15313.819694531$$
$$x_{7} = 28171.0038462628$$
$$x_{8} = 38342.2723552181$$
$$x_{9} = 21390.1665034433$$
$$x_{10} = -42444.8970797256$$
$$x_{11} = 23085.3739636572$$
$$x_{12} = 31561.4263435655$$
$$x_{13} = 13761.7961969892$$
$$x_{14} = -23794.2027929786$$
$$x_{15} = -30576.7585274643$$
$$x_{16} = 34951.8493563508$$
$$x_{17} = -38206.3969446393$$
$$x_{18} = -28033.3988668025$$
$$x_{19} = -34815.5120862654$$
$$x_{20} = 26475.7931123953$$
$$x_{21} = -13617.0799980095$$
$$x_{22} = -37358.6837623526$$
$$x_{23} = 24780.5830260884$$
$$x_{24} = 42580.3007360941$$
$$x_{25} = 35799.4551200724$$
$$x_{26} = -18706.4528567436$$
$$x_{27} = -17858.3748250259$$
$$x_{28} = 39189.8780710616$$
$$x_{29} = 30713.8206402264$$
$$x_{30} = 37494.66662299$$
$$x_{31} = -27185.5893046584$$
$$x_{32} = -36510.9654760296$$
$$x_{33} = -29728.9824836733$$
$$x_{34} = 29866.2149788368$$
$$x_{35} = -21250.4568264737$$
$$x_{36} = 18847.3604443445$$
$$x_{37} = -39054.1053579782$$
$$x_{38} = -41597.2049223586$$
$$x_{39} = -33967.776135552$$
$$x_{40} = -26337.7663647711$$
$$x_{41} = -40749.5090776704$$
$$x_{42} = 32409.0320762992$$
$$x_{43} = -32272.2832672024$$
$$x_{44} = -25489.928696076$$
$$x_{45} = -19554.4891574774$$
$$x_{46} = 34104.2435904426$$
$$x_{47} = -22946.3107719604$$
$$x_{48} = 17999.7605732465$$
$$x_{49} = -17010.2487134799$$
$$x_{50} = -35663.2417184403$$
$$x_{51} = -24642.0747592927$$
$$x_{52} = 15456.9723148165$$
$$x_{53} = 17152.1622761647$$
$$x_{54} = 33256.6378280935$$
$$x_{55} = 16304.5659946845$$
$$x_{56} = 40885.0894459342$$
$$x_{57} = 23932.9783366318$$
$$x_{58} = 29018.6093746581$$
$$x_{59} = -22098.3963560749$$
$$x_{60} = 14609.3820242319$$
$$x_{61} = -33120.0333764647$$
$$x_{62} = -20402.4890058282$$
$$x_{63} = -39901.8093087569$$
$$x_{64} = -14465.4956454721$$
$$x_{65} = 36647.0608769001$$
$$x_{66} = 25628.1879684537$$
$$x_{67} = 19694.9615528886$$
$$x_{68} = -31424.5252069205$$
$$x_{69} = -16162.0668174733$$
$$x_{70} = 22237.7699862725$$
The values of the extrema at the points:
(41732.695102116224, 9.01904154045824e-10)
(40037.48376850013, 9.79894726253857e-10)
(27323.39841628989, 2.10397380594579e-9)
(-28881.196241961603, -1.88312847211983e-9)
(20542.563639718326, 3.72217798511809e-9)
(-15313.819694530977, -6.69783996646637e-9)
(28171.00384626281, 1.97927170833934e-9)
(38342.27235521808, 1.06845680807748e-9)
(21390.16650344333, 3.43303808389221e-9)
(-42444.89707972562, -8.71891399699013e-10)
(23085.373963657177, 2.94736602114959e-9)
(31561.42634356547, 1.57687719810736e-9)
(13761.796196989177, 8.29372331882375e-9)
(-23794.20279297856, -2.77437997498929e-9)
(-30576.75852746425, -1.68007221090125e-9)
(34951.84935635075, 1.2857947465329e-9)
(-38206.396944639346, -1.07606987675392e-9)
(-28033.39886680253, -1.99875011909678e-9)
(-34815.512086265415, -1.29588469724359e-9)
(26475.79311239531, 2.24084324347717e-9)
(-13617.079998009467, -8.47093986472269e-9)
(-37358.68376235261, -1.1254581323037e-9)
(24780.583026088356, 2.55791247461768e-9)
(42580.30073609408, 8.66355097417115e-10)
(35799.45512007243, 1.22562982544271e-9)
(-18706.452856743646, -4.48871685490992e-9)
(-17858.37482502587, -4.92516210292849e-9)
(39189.878071061554, 1.02273942491395e-9)
(30713.820640226408, 1.66511099179531e-9)
(37494.66662298999, 1.11730954840083e-9)
(-27185.589304658384, -2.12535853990813e-9)
(-36510.96547602957, -1.17832656892473e-9)
(-29728.982483673324, -1.77725803955371e-9)
(29866.214978836815, 1.76096306125911e-9)
(-21250.456826473743, -3.47832634864163e-9)
(18847.360444344504, 4.42185131453689e-9)
(-39054.10535797821, -1.02986289436115e-9)
(-41597.204922358644, -9.07789032375997e-10)
(-33967.77613555197, -1.36137417807154e-9)
(-26337.766364771138, -2.26439141024015e-9)
(-40749.5090776704, -9.45950324408325e-10)
(32409.03207629917, 1.49547523260251e-9)
(-32272.283267202383, -1.50817565032972e-9)
(-25489.92869607596, -2.41752954367036e-9)
(-19554.48915747735, -4.10783309851236e-9)
(34104.243590442595, 1.35050105238038e-9)
(-22946.310771960383, -2.98319805320524e-9)
(17999.760573246498, 4.84809431934978e-9)
(-17010.248713479854, -5.42853069862973e-9)
(-35663.24171844028, -1.23501004708466e-9)
(-24642.07475929272, -2.58674796794428e-9)
(15456.972314816516, 6.57435470979148e-9)
(17152.162276164687, 5.33907478644989e-9)
(33256.63782809345, 1.42021757196306e-9)
(16304.565994684515, 5.90859787730375e-9)
(40885.08944593416, 9.39686981765065e-10)
(23932.97833663176, 2.74229915265772e-9)
(29018.609374658146, 1.86533636353917e-9)
(-22098.39635607487, -3.21651698731235e-9)
(14609.382024231918, 7.35931277536362e-9)
(-33120.03337646466, -1.43195707061265e-9)
(-20402.48900582819, -3.77346235927944e-9)
(-39901.80930875689, -9.86569694867799e-10)
(-14465.49564547205, -7.50644192786878e-9)
(36647.06087690013, 1.16959104231041e-9)
(25628.187968453716, 2.39151598311515e-9)
(19694.961552888588, 4.04944555644357e-9)
(-31424.52520692052, -1.5906463385201e-9)
(-16162.066817473331, -6.01324608034016e-9)
(22237.769986272524, 3.1763253198712e-9)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
The function has no maxima
Decreasing at the entire real axis