Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\operatorname{atan}{\left(\tan{\left(\frac{x}{\sqrt{2}} \right)} \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 0$$
Numerical solution$$x_{1} = -31.1001805671086$$
$$x_{2} = -13.3286488144751$$
$$x_{3} = 31.1001805671086$$
$$x_{4} = 102.186307577642$$
$$x_{5} = -48.871712319742$$
$$x_{6} = -62.2003611342171$$
$$x_{7} = 62.2003611342171$$
$$x_{8} = -93.3005417013257$$
$$x_{9} = 0$$
$$x_{10} = -53.3145952579004$$
$$x_{11} = 79.9718928868506$$
$$x_{12} = 97.7434246394841$$
$$x_{13} = -44.4288293815837$$
$$x_{14} = -75.5290099486922$$
$$x_{15} = -26.6572976289502$$
$$x_{16} = 57.7574781960588$$
$$x_{17} = -97.7434246394841$$
$$x_{18} = 8.88576587631673$$
$$x_{19} = 53.3145952579004$$
$$x_{20} = -71.0861270105339$$
$$x_{21} = 88.8576587631673$$
$$x_{22} = -8.88576587631673$$
$$x_{23} = -66.6432440723755$$
$$x_{24} = -79.9718928868506$$
$$x_{25} = -4.44288293815837$$
$$x_{26} = 17.7715317526335$$
$$x_{27} = 39.9859464434253$$
$$x_{28} = 48.871712319742$$
$$x_{29} = 93.3005417013257$$
$$x_{30} = -17.7715317526335$$
$$x_{31} = 44.4288293815837$$
$$x_{32} = -35.5430635052669$$
$$x_{33} = -84.414775825009$$
$$x_{34} = -22.2144146907918$$
$$x_{35} = 35.5430635052669$$
$$x_{36} = -88.8576587631673$$
$$x_{37} = 71.0861270105339$$
$$x_{38} = -57.7574781960588$$
$$x_{39} = 75.5290099486922$$
$$x_{40} = -39.9859464434253$$
$$x_{41} = 66.6432440723755$$
$$x_{42} = 13.3286488144751$$
$$x_{43} = 4.44288293815837$$
$$x_{44} = 26.6572976289502$$
$$x_{45} = 84.414775825009$$
$$x_{46} = 22.2144146907918$$