Mister Exam

Other calculators


arctg(tg(x/sqrt(2)))
  • How to use it?

  • Graphing y =:
  • 3x
  • cos0,5x cos0,5x
  • arctg(tg(x/sqrt(2))) arctg(tg(x/sqrt(2)))
  • sqrt(x)lnx
  • Identical expressions

  • arctg(tg(x/sqrt(two)))
  • arctg(tg(x divide by square root of (2)))
  • arctg(tg(x divide by square root of (two)))
  • arctg(tg(x/√(2)))
  • arctgtgx/sqrt2
  • arctg(tg(x divide by sqrt(2)))

Graphing y = arctg(tg(x/sqrt(2)))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
           /   /  x  \\
f(x) = atan|tan|-----||
           |   |  ___||
           \   \\/ 2 //
$$f{\left(x \right)} = \operatorname{atan}{\left(\tan{\left(\frac{x}{\sqrt{2}} \right)} \right)}$$
f = atan(tan(x/(sqrt(2))))
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\operatorname{atan}{\left(\tan{\left(\frac{x}{\sqrt{2}} \right)} \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = 0$$
Numerical solution
$$x_{1} = -31.1001805671086$$
$$x_{2} = -13.3286488144751$$
$$x_{3} = 31.1001805671086$$
$$x_{4} = 102.186307577642$$
$$x_{5} = -48.871712319742$$
$$x_{6} = -62.2003611342171$$
$$x_{7} = 62.2003611342171$$
$$x_{8} = -93.3005417013257$$
$$x_{9} = 0$$
$$x_{10} = -53.3145952579004$$
$$x_{11} = 79.9718928868506$$
$$x_{12} = 97.7434246394841$$
$$x_{13} = -44.4288293815837$$
$$x_{14} = -75.5290099486922$$
$$x_{15} = -26.6572976289502$$
$$x_{16} = 57.7574781960588$$
$$x_{17} = -97.7434246394841$$
$$x_{18} = 8.88576587631673$$
$$x_{19} = 53.3145952579004$$
$$x_{20} = -71.0861270105339$$
$$x_{21} = 88.8576587631673$$
$$x_{22} = -8.88576587631673$$
$$x_{23} = -66.6432440723755$$
$$x_{24} = -79.9718928868506$$
$$x_{25} = -4.44288293815837$$
$$x_{26} = 17.7715317526335$$
$$x_{27} = 39.9859464434253$$
$$x_{28} = 48.871712319742$$
$$x_{29} = 93.3005417013257$$
$$x_{30} = -17.7715317526335$$
$$x_{31} = 44.4288293815837$$
$$x_{32} = -35.5430635052669$$
$$x_{33} = -84.414775825009$$
$$x_{34} = -22.2144146907918$$
$$x_{35} = 35.5430635052669$$
$$x_{36} = -88.8576587631673$$
$$x_{37} = 71.0861270105339$$
$$x_{38} = -57.7574781960588$$
$$x_{39} = 75.5290099486922$$
$$x_{40} = -39.9859464434253$$
$$x_{41} = 66.6432440723755$$
$$x_{42} = 13.3286488144751$$
$$x_{43} = 4.44288293815837$$
$$x_{44} = 26.6572976289502$$
$$x_{45} = 84.414775825009$$
$$x_{46} = 22.2144146907918$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to atan(tan(x/(sqrt(2)))).
$$\operatorname{atan}{\left(\tan{\left(\frac{0}{\sqrt{2}} \right)} \right)}$$
The result:
$$f{\left(0 \right)} = 0$$
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{\sqrt{2}}{2} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$0 = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\operatorname{atan}{\left(\tan{\left(\frac{x}{\sqrt{2}} \right)} \right)} = - \operatorname{atan}{\left(\tan{\left(\frac{\sqrt{2}}{2} x \right)} \right)}$$
- No
$$\operatorname{atan}{\left(\tan{\left(\frac{x}{\sqrt{2}} \right)} \right)} = \operatorname{atan}{\left(\tan{\left(\frac{\sqrt{2}}{2} x \right)} \right)}$$
- No
so, the function
not is
neither even, nor odd
The graph
Graphing y = arctg(tg(x/sqrt(2)))