Mister Exam

Graphing y = arcctgx/(x-3)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       acot(x)
f(x) = -------
        x - 3 
f(x)=acot(x)x3f{\left(x \right)} = \frac{\operatorname{acot}{\left(x \right)}}{x - 3}
f = acot(x)/(x - 1*3)
The graph of the function
02468-8-6-4-2-1010-2020
The domain of the function
The points at which the function is not precisely defined:
x1=3x_{1} = 3
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
acot(x)x3=0\frac{\operatorname{acot}{\left(x \right)}}{x - 3} = 0
Solve this equation
Solution is not found,
it's possible that the graph doesn't intersect the axis X
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to acot(x)/(x - 1*3).
acot(0)(1)3+0\frac{\operatorname{acot}{\left(0 \right)}}{\left(-1\right) 3 + 0}
The result:
f(0)=π6f{\left(0 \right)} = - \frac{\pi}{6}
The point:
(0, -pi/6)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
acot(x)(x3)21(x3)(x2+1)=0- \frac{\operatorname{acot}{\left(x \right)}}{\left(x - 3\right)^{2}} - \frac{1}{\left(x - 3\right) \left(x^{2} + 1\right)} = 0
Solve this equation
The roots of this equation
x1=31921.8835434698x_{1} = -31921.8835434698
x2=24848.9527856772x_{2} = 24848.9527856772
x3=22304.9178115051x_{3} = 22304.9178115051
x4=35871.0864641394x_{4} = 35871.0864641394
x5=38414.3867016121x_{5} = 38414.3867016121
x6=32769.6940726206x_{6} = -32769.6940726206
x7=25986.8382213314x_{7} = -25986.8382213314
x8=37566.6273450369x_{8} = 37566.6273450369
x9=14960.8860813988x_{9} = -14960.8860813988
x10=37008.6063243624x_{10} = -37008.6063243624
x11=15518.8336328721x_{11} = 15518.8336328721
x12=24290.9504985193x_{12} = -24290.9504985193
x13=12414.7034718108x_{13} = -12414.7034718108
x14=18354.3754214744x_{14} = -18354.3754214744
x15=14670.2260130038x_{15} = 14670.2260130038
x16=29378.3813978389x_{16} = -29378.3813978389
x17=16657.783408065x_{17} = -16657.783408065
x18=14112.2895735892x_{18} = -14112.2895735892
x19=30226.22818334x_{19} = -30226.22818334
x20=38704.1170790913x_{20} = -38704.1170790913
x21=27682.6438443875x_{21} = -27682.6438443875
x22=35313.0668342955x_{22} = -35313.0668342955
x23=26834.7503365653x_{23} = -26834.7503365653
x24=40399.6026837339x_{24} = -40399.6026837339
x25=41805.3607928303x_{25} = 41805.3607928303
x26=28530.5203814017x_{26} = -28530.5203814017
x27=33327.7111964611x_{27} = 33327.7111964611
x28=37856.3650546609x_{28} = -37856.3650546609
x29=36160.8404213184x_{29} = -36160.8404213184
x30=1.26241821842168x_{30} = 1.26241821842168
x31=20050.7379682616x_{31} = -20050.7379682616
x32=24000.9702280612x_{32} = 24000.9702280612
x33=34175.5123312146x_{33} = 34175.5123312146
x34=25696.9101211369x_{34} = 25696.9101211369
x35=19760.5640406041x_{35} = 19760.5640406041
x36=16367.3357554312x_{36} = 16367.3357554312
x37=30784.242139886x_{37} = 30784.242139886
x38=20898.8503044486x_{38} = -20898.8503044486
x39=20608.7247596784x_{39} = 20608.7247596784
x40=17506.1121672217x_{40} = -17506.1121672217
x41=39262.1393115611x_{41} = 39262.1393115611
x42=17215.7481743741x_{42} = 17215.7481743741
x43=23152.9596471974x_{43} = 23152.9596471974
x44=23442.9703742917x_{44} = -23442.9703742917
x45=40957.6259784778x_{45} = 40957.6259784778
x46=19202.5816602195x_{46} = -19202.5816602195
x47=42095.0661510489x_{47} = -42095.0661510489
x48=28240.6537163389x_{48} = 28240.6537163389
x49=33617.4943084304x_{49} = -33617.4943084304
x50=34465.2850023106x_{50} = -34465.2850023106
x51=15809.3788845165x_{51} = -15809.3788845165
x52=27392.7585806149x_{52} = 27392.7585806149
x53=18912.3527533172x_{53} = 18912.3527533172
x54=35023.3038583412x_{54} = 35023.3038583412
x55=26544.8446743911x_{55} = 26544.8446743911
x56=29936.3941106863x_{56} = 29936.3941106863
x57=12123.544841056x_{57} = 12123.544841056
x58=13263.5701308315x_{58} = -13263.5701308315
x59=41247.3370154355x_{59} = -41247.3370154355
x60=21746.9237165814x_{60} = -21746.9237165814
x61=29088.5317374502x_{61} = 29088.5317374502
x62=36718.860771076x_{62} = 36718.860771076
x63=39551.8628248821x_{63} = -39551.8628248821
x64=18064.0836828544x_{64} = 18064.0836828544
x65=12972.6101323084x_{65} = 12972.6101323084
x66=31074.0618885764x_{66} = -31074.0618885764
x67=21456.8409729567x_{67} = 21456.8409729567
x68=25138.9056447972x_{68} = -25138.9056447972
x69=40109.8856055808x_{69} = 40109.8856055808
x70=13821.4931681849x_{70} = 13821.4931681849
x71=22594.9625089587x_{71} = -22594.9625089587
x72=32479.8996955549x_{72} = 32479.8996955549
x73=31632.0769879872x_{73} = 31632.0769879872
x74=42942.7903957194x_{74} = -42942.7903957194
The values of the extrema at the points:
                    -3.13264722713223e-5  
(-31921.8835434698, ---------------------)
                    -31921.8835434698 - 3 

                    4.02431445737447e-5  
(24848.9527856772, ---------------------)
                   -3 + 24848.9527856772 

                    4.48331622551052e-5  
(22304.9178115051, ---------------------)
                   -3 + 22304.9178115051 

                    2.78776055679455e-5  
(35871.0864641394, ---------------------)
                   -3 + 35871.0864641394 

                    2.60319137083125e-5  
(38414.3867016121, ---------------------)
                   -3 + 38414.3867016121 

                    -3.05160004690157e-5  
(-32769.6940726206, ---------------------)
                    -32769.6940726206 - 3 

                    -3.84810183905155e-5  
(-25986.8382213314, ---------------------)
                    -25986.8382213314 - 3 

                    2.66193712461632e-5  
(37566.6273450369, ---------------------)
                   -3 + 37566.6273450369 

                     -6.6840960693771e-5  
(-14960.8860813988, ---------------------)
                    -14960.8860813988 - 3 

                    -2.70207419050616e-5  
(-37008.6063243624, ---------------------)
                    -37008.6063243624 - 3 

                    6.44378322670923e-5  
(15518.8336328721, ---------------------)
                   -3 + 15518.8336328721 

                    -4.11675944708724e-5  
(-24290.9504985193, ---------------------)
                    -24290.9504985193 - 3 

                    -8.05496482544173e-5  
(-12414.7034718108, ---------------------)
                    -12414.7034718108 - 3 

                    -5.44829217038106e-5  
(-18354.3754214744, ---------------------)
                    -18354.3754214744 - 3 

                    6.81652755427732e-5  
(14670.2260130038, ---------------------)
                   -3 + 14670.2260130038 

                    -3.40386349428819e-5  
(-29378.3813978389, ---------------------)
                    -29378.3813978389 - 3 

                   -6.00319967129938e-5  
(-16657.783408065, ---------------------)
                    -16657.783408065 - 3 

                    -7.08602238574916e-5  
(-14112.2895735892, ---------------------)
                    -14112.2895735892 - 3 

                  -3.30838500116375e-5  
(-30226.22818334, ---------------------)
                   -30226.22818334 - 3  

                    -2.58370446155379e-5  
(-38704.1170790913, ---------------------)
                    -38704.1170790913 - 3 

                     -3.6123717271599e-5  
(-27682.6438443875, ---------------------)
                    -27682.6438443875 - 3 

                    -2.83181295021794e-5  
(-35313.0668342955, ---------------------)
                    -35313.0668342955 - 3 

                    -3.72651128478916e-5  
(-26834.7503365653, ---------------------)
                    -26834.7503365653 - 3 

                    -2.47527186745923e-5  
(-40399.6026837339, ---------------------)
                    -40399.6026837339 - 3 

                    2.39203772158515e-5  
(41805.3607928303, ---------------------)
                   -3 + 41805.3607928303 

                    -3.50501843717638e-5  
(-28530.5203814017, ---------------------)
                    -28530.5203814017 - 3 

                    3.00050607677518e-5  
(33327.7111964611, ---------------------)
                   -3 + 33327.7111964611 

                    -2.64156370619182e-5  
(-37856.3650546609, ---------------------)
                    -37856.3650546609 - 3 

                    -2.76542245172913e-5  
(-36160.8404213184, ---------------------)
                    -36160.8404213184 - 3 

                     0.669924024969721   
(1.26241821842168, ---------------------)
                   -3 + 1.26241821842168 

                    -4.98734760163832e-5  
(-20050.7379682616, ---------------------)
                    -20050.7379682616 - 3 

                    4.16649822869317e-5  
(24000.9702280612, ---------------------)
                   -3 + 24000.9702280612 

                    2.92607171480862e-5  
(34175.5123312146, ---------------------)
                   -3 + 34175.5123312146 

                    3.89151845409093e-5  
(25696.9101211369, ---------------------)
                   -3 + 25696.9101211369 

                    5.06058428844209e-5  
(19760.5640406041, ---------------------)
                   -3 + 19760.5640406041 

                    6.10972985278851e-5  
(16367.3357554312, ---------------------)
                   -3 + 16367.3357554312 

                  3.24841519600899e-5  
(30784.242139886, --------------------)
                  -3 + 30784.242139886 

                    -4.78495220870569e-5  
(-20898.8503044486, ---------------------)
                    -20898.8503044486 - 3 

                    4.85231381794035e-5  
(20608.7247596784, ---------------------)
                   -3 + 20608.7247596784 

                    -5.71229059519402e-5  
(-17506.1121672217, ---------------------)
                    -17506.1121672217 - 3 

                    2.54698296455105e-5  
(39262.1393115611, ---------------------)
                   -3 + 39262.1393115611 

                    5.80863514467433e-5  
(17215.7481743741, ---------------------)
                   -3 + 17215.7481743741 

                    4.31910224272008e-5  
(23152.9596471974, ---------------------)
                   -3 + 23152.9596471974 

                    -4.26567104521063e-5  
(-23442.9703742917, ---------------------)
                    -23442.9703742917 - 3 

                    2.44154776042627e-5  
(40957.6259784778, ---------------------)
                   -3 + 40957.6259784778 

                    -5.20763310262411e-5  
(-19202.5816602195, ---------------------)
                    -19202.5816602195 - 3 

                     -2.3755753137995e-5  
(-42095.0661510489, ---------------------)
                    -42095.0661510489 - 3 

                    3.54099451672214e-5  
(28240.6537163389, ---------------------)
                   -3 + 28240.6537163389 

                    -2.97464168664788e-5  
(-33617.4943084304, ---------------------)
                    -33617.4943084304 - 3 

                    -2.90147027553186e-5  
(-34465.2850023106, ---------------------)
                    -34465.2850023106 - 3 

                    -6.32535918059195e-5  
(-15809.3788845165, ---------------------)
                    -15809.3788845165 - 3 

                    3.65059983503612e-5  
(27392.7585806149, ---------------------)
                   -3 + 27392.7585806149 

                    5.28754942397455e-5  
(18912.3527533172, ---------------------)
                   -3 + 18912.3527533172 

                    2.85524176637634e-5  
(35023.3038583412, ---------------------)
                   -3 + 35023.3038583412 

                    3.76720983600886e-5  
(26544.8446743911, ---------------------)
                   -3 + 26544.8446743911 

                    3.34041566907047e-5  
(29936.3941106863, ---------------------)
                   -3 + 29936.3941106863 

                  8.24841257934442e-5  
(12123.544841056, --------------------)
                  -3 + 12123.544841056 

                    -7.53944818959944e-5  
(-13263.5701308315, ---------------------)
                    -13263.5701308315 - 3 

                    -2.42439893617825e-5  
(-41247.3370154355, ---------------------)
                    -41247.3370154355 - 3 

                    -4.59835152929101e-5  
(-21746.9237165814, ---------------------)
                    -21746.9237165814 - 3 

                    3.43778093934731e-5  
(29088.5317374502, ---------------------)
                   -3 + 29088.5317374502 

                  2.72339603885665e-5  
(36718.860771076, --------------------)
                  -3 + 36718.860771076 

                    -2.52832592036049e-5  
(-39551.8628248821, ---------------------)
                    -39551.8628248821 - 3 

                    5.53584680261216e-5  
(18064.0836828544, ---------------------)
                   -3 + 18064.0836828544 

                    7.70854891822246e-5  
(12972.6101323084, ---------------------)
                   -3 + 12972.6101323084 

                    -3.21811806657441e-5  
(-31074.0618885764, ---------------------)
                    -31074.0618885764 - 3 

                    4.66051829594275e-5  
(21456.8409729567, ---------------------)
                   -3 + 21456.8409729567 

                    -3.97789789898633e-5  
(-25138.9056447972, ---------------------)
                    -25138.9056447972 - 3 

                    2.49315096439385e-5  
(40109.8856055808, ---------------------)
                   -3 + 40109.8856055808 

                    7.23510829175073e-5  
(13821.4931681849, ---------------------)
                   -3 + 13821.4931681849 

                    -4.42576525165994e-5  
(-22594.9625089587, ---------------------)
                    -22594.9625089587 - 3 

                    3.07882724102404e-5  
(32479.8996955549, ---------------------)
                   -3 + 32479.8996955549 

                    3.16134789393257e-5  
(31632.0769879872, ---------------------)
                   -3 + 31632.0769879872 

                    -2.32867960047357e-5  
(-42942.7903957194, ---------------------)
                    -42942.7903957194 - 3 


Intervals of increase and decrease of the function:
Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
Maxima of the function at points:
x74=1.26241821842168x_{74} = 1.26241821842168
Decreasing at intervals
(,1.26241821842168]\left(-\infty, 1.26241821842168\right]
Increasing at intervals
[1.26241821842168,)\left[1.26241821842168, \infty\right)
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
2(x(x2+1)2+acot(x)(x3)2+1(x3)(x2+1))x3=0\frac{2 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} + \frac{\operatorname{acot}{\left(x \right)}}{\left(x - 3\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x^{2} + 1\right)}\right)}{x - 3} = 0
Solve this equation
The roots of this equation
x1=4647.7973577865x_{1} = 4647.7973577865
x2=2754.73556955859x_{2} = -2754.73556955859
x3=10538.2729880046x_{3} = 10538.2729880046
x4=9738.13463310465x_{4} = -9738.13463310465
x5=7266.30829889645x_{5} = 7266.30829889645
x6=3992.82165401903x_{6} = 3992.82165401903
x7=10102.0454099151x_{7} = 10102.0454099151
x8=3191.8312612551x_{8} = -3191.8312612551
x9=5593.25770745173x_{9} = -5593.25770745173
x10=8357.04324622462x_{10} = 8357.04324622462
x11=2973.31679944955x_{11} = -2973.31679944955
x12=1805.43955191568x_{12} = 1805.43955191568
x13=2536.07142944323x_{13} = -2536.07142944323
x14=4283.7463084719x_{14} = -4283.7463084719
x15=2462.92383062021x_{15} = 2462.92383062021
x16=9883.92871280749x_{16} = 9883.92871280749
x17=10828.6975404165x_{17} = -10828.6975404165
x18=8211.2533422616x_{18} = -8211.2533422616
x19=8575.17841051419x_{19} = 8575.17841051419
x20=3410.29118322484x_{20} = -3410.29118322484
x21=7702.6154558089x_{21} = 7702.6154558089
x22=2243.97915038475x_{22} = 2243.97915038475
x23=7556.82816022102x_{23} = -7556.82816022102
x24=9665.80990054675x_{24} = 9665.80990054675
x25=6466.02475936076x_{25} = -6466.02475936076
x26=10320.1601270208x_{26} = 10320.1601270208
x27=7993.11546158443x_{27} = -7993.11546158443
x28=4938.5724258037x_{28} = -4938.5724258037
x29=10756.3841066263x_{29} = 10756.3841066263
x30=5520.81250035928x_{30} = 5520.81250035928
x31=2317.3026441142x_{31} = -2317.3026441142
x32=2681.72337804868x_{32} = 2681.72337804868
x33=3774.43639658305x_{33} = 3774.43639658305
x34=2098.39928129367x_{34} = -2098.39928129367
x35=10610.5884051352x_{35} = -10610.5884051352
x36=1660.00043820182x_{36} = -1660.00043820182
x37=6393.62489744838x_{37} = 6393.62489744838
x38=6247.8454847632x_{38} = -6247.8454847632
x39=6175.4360524004x_{39} = 6175.4360524004
x40=6611.80582431964x_{40} = 6611.80582431964
x41=5375.04183086147x_{41} = -5375.04183086147
x42=9083.7727799182x_{42} = -9083.7727799182
x43=3556.01176544918x_{43} = 3556.01176544918
x44=7484.46433232432x_{44} = 7484.46433232432
x45=7920.76207887546x_{45} = 7920.76207887546
x46=3628.70599204772x_{46} = -3628.70599204772
x47=7048.14689478809x_{47} = 7048.14689478809
x48=9520.01629729564x_{48} = -9520.01629729564
x49=4866.07619926592x_{49} = 4866.07619926592
x50=5156.81392122052x_{50} = -5156.81392122052
x51=8138.9045667575x_{51} = 8138.9045667575
x52=4065.42827072866x_{52} = -4065.42827072866
x53=6902.36298248242x_{53} = -6902.36298248242
x54=8647.51899910909x_{54} = -8647.51899910909
x55=5957.23840880638x_{55} = 5957.23840880638
x56=7120.52315489378x_{56} = -7120.52315489378
x57=7774.97384050646x_{57} = -7774.97384050646
x58=6684.19704156285x_{58} = -6684.19704156285
x59=5302.58168270876x_{59} = 5302.58168270876
x60=8865.64726589311x_{60} = -8865.64726589311
x61=3119.01072872497x_{61} = 3119.01072872497
x62=10392.4776540664x_{62} = -10392.4776540664
x63=6029.65847446908x_{63} = -6029.65847446908
x64=5811.46287609826x_{64} = -5811.46287609826
x65=9956.2508846458x_{65} = -9956.2508846458
x66=11046.8051546367x_{66} = -11046.8051546367
x67=5084.33688450853x_{67} = 5084.33688450853
x68=4211.17374472313x_{68} = 4211.17374472313
x69=4429.49763773049x_{69} = 4429.49763773049
x70=7338.6780646605x_{70} = -7338.6780646605
x71=10174.3651844545x_{71} = -10174.3651844545
x72=9011.43922338841x_{72} = 9011.43922338841
x73=6829.97959979156x_{73} = 6829.97959979156
x74=3847.08306824419x_{74} = -3847.08306824419
x75=1585.66222122544x_{75} = 1585.66222122544
x76=8793.31032352348x_{76} = 8793.31032352348
x77=9229.56532555109x_{77} = 9229.56532555109
x78=9447.68882539942x_{78} = 9447.68882539942
x79=2024.84149664708x_{79} = 2024.84149664708
x80=4720.31551331578x_{80} = -4720.31551331578
x81=0.17935688002721x_{81} = 0.17935688002721
x82=1879.31904952349x_{82} = -1879.31904952349
x83=9301.8957324112x_{83} = -9301.8957324112
x84=8429.38776883049x_{84} = -8429.38776883049
x85=2900.4110627802x_{85} = 2900.4110627802
x86=5739.03095087926x_{86} = 5739.03095087926
x87=4502.04100865049x_{87} = -4502.04100865049
x88=3337.53990547011x_{88} = 3337.53990547011
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
x1=3x_{1} = 3

limx3(2(x(x2+1)2+acot(x)(x3)2+1(x3)(x2+1))x3)=\lim_{x \to 3^-}\left(\frac{2 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} + \frac{\operatorname{acot}{\left(x \right)}}{\left(x - 3\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x^{2} + 1\right)}\right)}{x - 3}\right) = -\infty
Let's take the limit
limx3+(2(x(x2+1)2+acot(x)(x3)2+1(x3)(x2+1))x3)=\lim_{x \to 3^+}\left(\frac{2 \left(\frac{x}{\left(x^{2} + 1\right)^{2}} + \frac{\operatorname{acot}{\left(x \right)}}{\left(x - 3\right)^{2}} + \frac{1}{\left(x - 3\right) \left(x^{2} + 1\right)}\right)}{x - 3}\right) = \infty
Let's take the limit
- the limits are not equal, so
x1=3x_{1} = 3
- is an inflection point

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
(,0.17935688002721]\left(-\infty, 0.17935688002721\right]
Convex at the intervals
[0.17935688002721,)\left[0.17935688002721, \infty\right)
Vertical asymptotes
Have:
x1=3x_{1} = 3
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limx(acot(x)x3)=0\lim_{x \to -\infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x - 3}\right) = 0
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=0y = 0
limx(acot(x)x3)=0\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x - 3}\right) = 0
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=0y = 0
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of acot(x)/(x - 1*3), divided by x at x->+oo and x ->-oo
limx(acot(x)x(x3))=0\lim_{x \to -\infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x \left(x - 3\right)}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
limx(acot(x)x(x3))=0\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{x \left(x - 3\right)}\right) = 0
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
acot(x)x3=acot(x)x3\frac{\operatorname{acot}{\left(x \right)}}{x - 3} = - \frac{\operatorname{acot}{\left(x \right)}}{- x - 3}
- No
acot(x)x3=acot(x)x3\frac{\operatorname{acot}{\left(x \right)}}{x - 3} = \frac{\operatorname{acot}{\left(x \right)}}{- x - 3}
- No
so, the function
not is
neither even, nor odd
The graph
Graphing y = arcctgx/(x-3)