Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 0$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -10$$
$$x_{2} = 10$$
$$\lim_{x \to -10^-}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = -\infty$$
$$\lim_{x \to -10^+}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = -10$$
- is an inflection point
$$\lim_{x \to 10^-}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = -\infty$$
$$\lim_{x \to 10^+}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 10$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, 0\right]$$
Convex at the intervals
$$\left[0, \infty\right)$$