Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • -x^2(x+4)^2
  • x√2-x
  • x^2-x+2
  • -x^2+5x+4
  • Identical expressions

  • arctan((two 0x)/(one hundred -x^2))
  • arc tangent of ((20x) divide by (100 minus x squared ))
  • arc tangent of ((two 0x) divide by (one hundred minus x squared ))
  • arctan((20x)/(100-x2))
  • arctan20x/100-x2
  • arctan((20x)/(100-x²))
  • arctan((20x)/(100-x to the power of 2))
  • arctan20x/100-x^2
  • arctan((20x) divide by (100-x^2))
  • Similar expressions

  • arctan((20x)/(100+x^2))

Graphing y = arctan((20x)/(100-x^2))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
           /  20*x  \
f(x) = atan|--------|
           |       2|
           \100 - x /
$$f{\left(x \right)} = \operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)}$$
f = atan((20*x)/(100 - x^2))
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = -10$$
$$x_{2} = 10$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Numerical solution
$$x_{1} = 0$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to atan((20*x)/(100 - x^2)).
$$\operatorname{atan}{\left(\frac{0 \cdot 20}{100 - 0^{2}} \right)}$$
The result:
$$f{\left(0 \right)} = 0$$
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{\frac{40 x^{2}}{\left(100 - x^{2}\right)^{2}} + \frac{20}{100 - x^{2}}}{\frac{400 x^{2}}{\left(100 - x^{2}\right)^{2}} + 1} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = 0$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -10$$
$$x_{2} = 10$$

$$\lim_{x \to -10^-}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = -\infty$$
$$\lim_{x \to -10^+}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{1} = -10$$
- is an inflection point
$$\lim_{x \to 10^-}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = -\infty$$
$$\lim_{x \to 10^+}\left(\frac{40 x \left(- \frac{4 x^{2}}{x^{2} - 100} + 3 + \frac{400 \left(\frac{2 x^{2}}{x^{2} - 100} - 1\right)^{2}}{\left(x^{2} - 100\right) \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right)}{\left(x^{2} - 100\right)^{2} \left(\frac{400 x^{2}}{\left(x^{2} - 100\right)^{2}} + 1\right)}\right) = \infty$$
- the limits are not equal, so
$$x_{2} = 10$$
- is an inflection point

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, 0\right]$$
Convex at the intervals
$$\left[0, \infty\right)$$
Vertical asymptotes
Have:
$$x_{1} = -10$$
$$x_{2} = 10$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 0$$
$$\lim_{x \to \infty} \operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of atan((20*x)/(100 - x^2)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{\operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)} = - \operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)}$$
- No
$$\operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)} = \operatorname{atan}{\left(\frac{20 x}{100 - x^{2}} \right)}$$
- No
so, the function
not is
neither even, nor odd