In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative$$- \frac{\operatorname{atan}{\left(\frac{1}{x} \right)}}{\left(x + 2\right)^{2}} - \frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right) \left(x + 2\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 16587.7229190396$$
$$x_{2} = 36933.0242421313$$
$$x_{3} = 42866.5779293747$$
$$x_{4} = 25065.4688242842$$
$$x_{5} = -18153.7968768281$$
$$x_{6} = -35956.0390656664$$
$$x_{7} = -19849.451180785$$
$$x_{8} = -38499.021037117$$
$$x_{9} = 12348.0239520496$$
$$x_{10} = 30151.6672917348$$
$$x_{11} = 35237.7035205466$$
$$x_{12} = 29303.981040389$$
$$x_{13} = -41889.6312661903$$
$$x_{14} = 38628.3352801573$$
$$x_{15} = 28456.2900188718$$
$$x_{16} = 23370.015526887$$
$$x_{17} = -14762.1702224834$$
$$x_{18} = -34260.7035621536$$
$$x_{19} = -40194.3302854141$$
$$x_{20} = -35108.372872$$
$$x_{21} = -30022.3008645925$$
$$x_{22} = 36085.3651754688$$
$$x_{23} = -25783.7700371527$$
$$x_{24} = -13914.1680598466$$
$$x_{25} = -37651.3629585359$$
$$x_{26} = -17305.9359759458$$
$$x_{27} = 40323.6378353104$$
$$x_{28} = 27608.5937990085$$
$$x_{29} = -23240.5602094796$$
$$x_{30} = -24088.3063452608$$
$$x_{31} = -27479.2016118189$$
$$x_{32} = 13196.0450486925$$
$$x_{33} = -39346.6767624349$$
$$x_{34} = 42018.9329177414$$
$$x_{35} = 22522.2754805973$$
$$x_{36} = -21545.0336007701$$
$$x_{37} = 24217.7463381975$$
$$x_{38} = -12217.9913387618$$
$$x_{39} = 39475.9875509635$$
$$x_{40} = 21674.5251522753$$
$$x_{41} = -29174.6067691777$$
$$x_{42} = -36803.7023616607$$
$$x_{43} = 41171.2862538706$$
$$x_{44} = 17435.5690134626$$
$$x_{45} = 26760.8918998626$$
$$x_{46} = -26631.4894482298$$
$$x_{47} = 18283.3935690576$$
$$x_{48} = 25913.1837793627$$
$$x_{49} = 30999.349155358$$
$$x_{50} = -24936.0426238831$$
$$x_{51} = -22392.8030712172$$
$$x_{52} = -13066.1122911295$$
$$x_{53} = 34390.0390897917$$
$$x_{54} = 19131.1993334596$$
$$x_{55} = 20826.7633307161$$
$$x_{56} = -15610.1277726359$$
$$x_{57} = -20697.2502454371$$
$$x_{58} = 31847.0269739212$$
$$x_{59} = 14044.018564154$$
$$x_{60} = -28326.9071906733$$
$$x_{61} = -19001.634248567$$
$$x_{62} = 14891.9521692111$$
$$x_{63} = -33413.0308950943$$
$$x_{64} = -41041.9817443474$$
$$x_{65} = -30869.9899364173$$
$$x_{66} = -32565.3546042869$$
$$x_{67} = 33542.3716770708$$
$$x_{68} = -31717.6743942306$$
$$x_{69} = -16458.0478017161$$
$$x_{70} = 19978.9886071672$$
$$x_{71} = 32694.7010553391$$
$$x_{72} = 15739.8519773568$$
$$x_{73} = 37780.6808915892$$
The values of the extrema at the points:
(16587.72291903956, 3.63390939414846e-9)
(36933.02424213132, 7.33072183377707e-10)
(42866.57792937472, 5.44179413311006e-10)
(25065.468824284155, 1.59152580333635e-9)
(-18153.796876828063, 3.03468001564172e-9)
(-35956.03906566644, 7.73535893033487e-10)
(-19849.451180785014, 2.53832223355915e-9)
(-38499.02103711696, 6.7471938717723e-10)
(12348.023952049642, 6.55744619684061e-9)
(30151.667291734844, 1.09988816496254e-9)
(35237.703520546616, 8.05304557132222e-10)
(29303.98104038901, 1.16443998730426e-9)
(-41889.63126619027, 5.69911815064452e-10)
(38628.33528015727, 6.70139982754219e-10)
(28456.290018871823, 1.23484634452392e-9)
(23370.015526887033, 1.83081656259178e-9)
(-14762.170222483426, 4.58942655745189e-9)
(-34260.70356215356, 8.51986667303278e-10)
(-40194.33028541407, 6.19001948967272e-10)
(-35108.37287200003, 8.1134083830826e-10)
(-30022.300864592482, 1.10953494899044e-9)
(36085.36517546877, 7.67916007881665e-10)
(-25783.770037152663, 1.50432215043283e-9)
(-13914.168059846603, 5.16592312791241e-9)
(-37651.36295853592, 7.05442573280625e-10)
(-17305.935975945784, 3.33933513746353e-9)
(40323.63783531036, 6.14977248444631e-10)
(27608.593799008457, 1.31183727205356e-9)
(-23240.560209479583, 1.85158728724227e-9)
(-24088.306345260837, 1.72354857755394e-9)
(-27479.201611818877, 1.3244128597311e-9)
(13196.045048692522, 5.74178072835781e-9)
(-39346.676762434894, 6.45960497977612e-10)
(42018.93291774137, 5.66355719448469e-10)
(22522.275480597287, 1.97122819879297e-9)
(-21545.033600770126, 2.15449735440318e-9)
(24217.7463381975, 1.70489125630029e-9)
(-12217.991338761805, 6.69994858512238e-9)
(39475.98755096351, 6.41670377669519e-10)
(21674.525152275255, 2.12843672576819e-9)
(-29174.606769177743, 1.17495098782929e-9)
(-36803.70236166067, 7.38313112289218e-10)
(41171.28625387064, 5.89915806463741e-10)
(17435.569013462577, 3.28910649123316e-9)
(26760.891899862592, 1.39626025604068e-9)
(-26631.48944822983, 1.41007334595823e-9)
(18283.393569057633, 2.99115472903318e-9)
(25913.183779362742, 1.48910366201143e-9)
(30999.349155358046, 1.04055928711977e-9)
(-24936.042623883113, 1.60834706395684e-9)
(-22392.803071217215, 1.99444410054978e-9)
(-13066.112291129475, 5.85832833253184e-9)
(34390.03908979168, 8.45491809216041e-10)
(19131.199333459597, 2.73193402262787e-9)
(20826.763330716087, 2.30523249325733e-9)
(-15610.127772635873, 4.10433432669865e-9)
(-20697.250245437055, 2.33462250029408e-9)
(31847.026973921213, 9.85904696571643e-10)
(14044.01856415396, 5.06938606079722e-9)
(-28326.907190673326, 1.24632797891631e-9)
(-19001.634248567043, 2.76989817779042e-9)
(14891.952169211147, 4.50856579523168e-9)
(-33413.03089509429, 8.95765334698308e-10)
(-41041.981744347395, 5.93696540305781e-10)
(-30869.989936417267, 1.0494340759053e-9)
(-32565.35460428687, 9.43007289173052e-10)
(33542.37167707083, 8.88764238480341e-10)
(-31717.674394230628, 9.94087728879106e-10)
(-16458.04780171614, 3.69229285477188e-9)
(19978.988607167194, 2.50501037096808e-9)
(32694.7010553391, 9.35445935974442e-10)
(15739.851977356784, 4.03592912764465e-9)
(37780.68089158923, 7.00547276479032e-10)
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
The function has no maxima
Decreasing at the entire real axis