Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{2 \left(3 - \frac{4}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right)}{x^{4} \left(1 + \frac{1}{x^{4}}\right)} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{3^{\frac{3}{4}}}{3}$$
$$x_{2} = \frac{3^{\frac{3}{4}}}{3}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(\frac{2 \left(3 - \frac{4}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right)}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right) = -2$$
$$\lim_{x \to 0^+}\left(\frac{2 \left(3 - \frac{4}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right)}{x^{4} \left(1 + \frac{1}{x^{4}}\right)}\right) = -2$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, - \frac{3^{\frac{3}{4}}}{3}\right] \cup \left[\frac{3^{\frac{3}{4}}}{3}, \infty\right)$$
Convex at the intervals
$$\left[- \frac{3^{\frac{3}{4}}}{3}, \frac{3^{\frac{3}{4}}}{3}\right]$$