Let's find the inflection points, we'll need to solve the equation for this
dx2d2f(x)=0(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
dx2d2f(x)=the second derivative(5x+1)2+13⋅5x(−(5x+1)2+12⋅5x(5x+1)atan(5x+1)+(5x+1)2+12⋅5x+atan(5x+1))log(5)2atan(5x+1)=0Solve this equationThe roots of this equation
x1=95.2242768391714x2=85.2242768391714x3=21.2242894893908x4=−44.9148275920459x5=−60.9148275920459x6=−36.9148275920459x7=−66.9148275920459x8=−28.9148275920415x9=93.2242768391714x10=−110.914827592046x11=−46.9148275920459x12=43.2242768391714x13=−84.9148275920459x14=−90.9148275920459x15=−102.914827592046x16=69.2242768391714x17=−112.914827592046x18=31.2242768391727x19=−20.9148258621738x20=−82.9148275920459x21=−56.9148275920459x22=39.2242768391714x23=87.2242768391714x24=−70.9148275920459x25=−76.9148275920459x26=53.2242768391714x27=71.2242768391714x28=23.2242773451776x29=103.224276839171x30=−104.914827592046x31=81.2242768391714x32=−68.9148275920459x33=19.2245931342562x34=0.542176246771954x35=79.2242768391714x36=−38.9148275920459x37=27.224276839981x38=55.2242768391714x39=−26.9148275919352x40=−64.9148275920459x41=−50.9148275920459x42=−42.9148275920459x43=41.2242768391714x44=67.2242768391714x45=63.2242768391714x46=−54.9148275920459x47=45.2242768391714x48=75.2242768391714x49=−92.9148275920459x50=−100.914827592046x51=97.2242768391714x52=107.224276839171x53=101.224276839171x54=−52.9148275920459x55=−32.9148275920459x56=−74.9148275920459x57=105.224276839171x58=83.2242768391714x59=−80.9148275920459x60=91.2242768391714x61=51.2242768391714x62=−96.9148275920459x63=77.2242768391714x64=−40.9148275920459x65=−72.9148275920459x66=−24.914827589278x67=61.2242768391714x68=−78.9148275920459x69=37.2242768391714x70=113.224276839171x71=−94.9148275920459x72=109.224276839171x73=47.2242768391714x74=111.224276839171x75=57.2242768391714x76=−108.914827592046x77=−22.9148275228492x78=25.2242768594116x79=89.2242768391714x80=29.2242768392038x81=59.2242768391714x82=35.2242768391714x83=99.2242768391714x84=−86.9148275920459x85=−106.914827592046x86=49.2242768391714x87=−98.9148275920459x88=−62.9148275920459x89=33.2242768391715x90=65.2242768391714x91=−88.9148275920459x92=−48.9148275920459x93=−58.9148275920459x94=73.2242768391714x95=−18.914784374042x96=−30.9148275920457x97=−34.9148275920459Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
(−∞,0.542176246771954]Convex at the intervals
[0.542176246771954,∞)