Mister Exam

其他计算器

函数图像 y = arcsin((x+2)/(2x+1))

v

图像:

交点:

显示?

分段定义:

解答

You have entered [src]
           / x + 2 \
f(x) = asin|-------|
           \2*x + 1/
$$f{\left(x \right)} = \operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)}$$
f = asin((x + 2)/(2*x + 1))
The graph of the function
The domain of the function
The points at which the function is not precisely defined:
$$x_{1} = -0.5$$
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = -2$$
Numerical solution
$$x_{1} = -2$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to asin((x + 2)/(2*x + 1)).
$$\operatorname{asin}{\left(\frac{2}{0 \cdot 2 + 1} \right)}$$
The result:
$$f{\left(0 \right)} = \operatorname{asin}{\left(2 \right)}$$
The point:
(0, asin(2))
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{- \frac{2 \left(x + 2\right)}{\left(2 x + 1\right)^{2}} + \frac{1}{2 x + 1}}{\sqrt{- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{\left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right) \left(\frac{\left(x + 2\right) \left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right)}{\left(2 x + 1\right) \left(- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1\right)} + 4\right)}{\left(2 x + 1\right)^{2} \sqrt{- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1}} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = - \frac{1}{8} + \frac{\sqrt{33}}{8}$$
$$x_{2} = - \frac{\sqrt{33}}{8} - \frac{1}{8}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = -0.5$$

$$\lim_{x \to -0.5^-}\left(\frac{\left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right) \left(\frac{\left(x + 2\right) \left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right)}{\left(2 x + 1\right) \left(- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1\right)} + 4\right)}{\left(2 x + 1\right)^{2} \sqrt{- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1}}\right) = \infty i$$
$$\lim_{x \to -0.5^+}\left(\frac{\left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right) \left(\frac{\left(x + 2\right) \left(\frac{2 \left(x + 2\right)}{2 x + 1} - 1\right)}{\left(2 x + 1\right) \left(- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1\right)} + 4\right)}{\left(2 x + 1\right)^{2} \sqrt{- \frac{\left(x + 2\right)^{2}}{\left(2 x + 1\right)^{2}} + 1}}\right) = - \infty i$$
- the limits are not equal, so
$$x_{1} = -0.5$$
- is an inflection point

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis
Vertical asymptotes
Have:
$$x_{1} = -0.5$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)} = \frac{\pi}{6}$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = \frac{\pi}{6}$$
$$\lim_{x \to \infty} \operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)} = \frac{\pi}{6}$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = \frac{\pi}{6}$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of asin((x + 2)/(2*x + 1)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{\operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)} = \operatorname{asin}{\left(\frac{2 - x}{1 - 2 x} \right)}$$
- No
$$\operatorname{asin}{\left(\frac{x + 2}{2 x + 1} \right)} = - \operatorname{asin}{\left(\frac{2 - x}{1 - 2 x} \right)}$$
- No
so, the function
not is
neither even, nor odd