Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(2 - \frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(x + 5\right)}{\left(1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)}\right)}{\sqrt{1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}} \left(x - 2\right)^{2}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = - \frac{1}{3}$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 2$$
$$\lim_{x \to 2^-}\left(\frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(2 - \frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(x + 5\right)}{\left(1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)}\right)}{\sqrt{1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}} \left(x - 2\right)^{2}}\right) = - \infty i$$
$$\lim_{x \to 2^+}\left(\frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(2 - \frac{\left(1 - \frac{x + 5}{x - 2}\right) \left(x + 5\right)}{\left(1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)}\right)}{\sqrt{1 - \frac{\left(x + 5\right)^{2}}{\left(x - 2\right)^{2}}} \left(x - 2\right)^{2}}\right) = \infty i$$
- the limits are not equal, so
$$x_{1} = 2$$
- is an inflection point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Have no bends at the whole real axis