Mister Exam

Other calculators

  • How to use it?

  • Graphing y =:
  • x/(3-x^2)
  • (x+3)/(x-1)
  • x^3+3x^2-9x+4
  • x+x^2
  • Identical expressions

  • arcsin(four *x/(four +x^ two))
  • arc sinus of (4 multiply by x divide by (4 plus x squared ))
  • arc sinus of (four multiply by x divide by (four plus x to the power of two))
  • arcsin(4*x/(4+x2))
  • arcsin4*x/4+x2
  • arcsin(4*x/(4+x²))
  • arcsin(4*x/(4+x to the power of 2))
  • arcsin(4x/(4+x^2))
  • arcsin(4x/(4+x2))
  • arcsin4x/4+x2
  • arcsin4x/4+x^2
  • arcsin(4*x divide by (4+x^2))
  • Similar expressions

  • arcsin(4*x/(4-x^2))

Graphing y = arcsin(4*x/(4+x^2))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
           / 4*x  \
f(x) = asin|------|
           |     2|
           \4 + x /
$$f{\left(x \right)} = \operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)}$$
f = asin((4*x)/(x^2 + 4))
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Numerical solution
$$x_{1} = 0$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to asin((4*x)/(4 + x^2)).
$$\operatorname{asin}{\left(\frac{0 \cdot 4}{0^{2} + 4} \right)}$$
The result:
$$f{\left(0 \right)} = 0$$
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
$$\frac{d}{d x} f{\left(x \right)} = 0$$
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
$$\frac{d}{d x} f{\left(x \right)} = $$
the first derivative
$$\frac{- \frac{8 x^{2}}{\left(x^{2} + 4\right)^{2}} + \frac{4}{x^{2} + 4}}{\sqrt{- \frac{16 x^{2}}{\left(x^{2} + 4\right)^{2}} + 1}} = 0$$
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$\frac{8 x \left(\frac{4 x^{2}}{x^{2} + 4} - 3 + \frac{8 \left(\frac{2 x^{2}}{x^{2} + 4} - 1\right)^{2}}{\left(x^{2} + 4\right) \left(- \frac{16 x^{2}}{\left(x^{2} + 4\right)^{2}} + 1\right)}\right)}{\left(x^{2} + 4\right)^{2} \sqrt{- \frac{16 x^{2}}{\left(x^{2} + 4\right)^{2}} + 1}} = 0$$
Solve this equation
The roots of this equation
$$x_{1} = 0$$

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left(-\infty, 0\right]$$
Convex at the intervals
$$\left[0, \infty\right)$$
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the left:
$$y = 0$$
$$\lim_{x \to \infty} \operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)} = 0$$
Let's take the limit
so,
equation of the horizontal asymptote on the right:
$$y = 0$$
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of asin((4*x)/(4 + x^2)), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the right
$$\lim_{x \to \infty}\left(\frac{\operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)}}{x}\right) = 0$$
Let's take the limit
so,
inclined coincides with the horizontal asymptote on the left
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)} = - \operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)}$$
- No
$$\operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)} = \operatorname{asin}{\left(\frac{4 x}{x^{2} + 4} \right)}$$
- No
so, the function
not is
neither even, nor odd