Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative$$\frac{- \frac{1 + \frac{\log{\left(x \right)}}{\log{\left(x \right)}^{2} - 1}}{\sqrt{1 - \log{\left(x \right)}^{2}}} + 6 \operatorname{asin}{\left(\log{\left(x \right)} \right)} - \frac{4}{\sqrt{1 - \log{\left(x \right)}^{2}}}}{x^{4}} = 0$$
Solve this equationThe roots of this equation
$$x_{1} = 2.09653484237811$$
You also need to calculate the limits of y '' for arguments seeking to indeterminate points of a function:
Points where there is an indetermination:
$$x_{1} = 0$$
$$\lim_{x \to 0^-}\left(\frac{- \frac{1 + \frac{\log{\left(x \right)}}{\log{\left(x \right)}^{2} - 1}}{\sqrt{1 - \log{\left(x \right)}^{2}}} + 6 \operatorname{asin}{\left(\log{\left(x \right)} \right)} - \frac{4}{\sqrt{1 - \log{\left(x \right)}^{2}}}}{x^{4}}\right) = \infty i$$
$$\lim_{x \to 0^+}\left(\frac{- \frac{1 + \frac{\log{\left(x \right)}}{\log{\left(x \right)}^{2} - 1}}{\sqrt{1 - \log{\left(x \right)}^{2}}} + 6 \operatorname{asin}{\left(\log{\left(x \right)} \right)} - \frac{4}{\sqrt{1 - \log{\left(x \right)}^{2}}}}{x^{4}}\right) = \infty i$$
- limits are equal, then skip the corresponding point
Сonvexity and concavity intervals:Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
$$\left[2.09653484237811, \infty\right)$$
Convex at the intervals
$$\left(-\infty, 2.09653484237811\right]$$