Mister Exam

Other calculators

Graphing y = arccosx-sqrt(1-0.3*x^3)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
                      __________
                     /        3 
                    /      3*x  
f(x) = acos(x) -   /   1 - ---- 
                 \/         10  
$$f{\left(x \right)} = - \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)}$$
f = -sqrt(1 - 3*x^3/10) + acos(x)
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)} = 0$$
Solve this equation
The points of intersection with the axis X:

Numerical solution
$$x_{1} = 0.562925952858039$$
$$x_{2} = 2.1414535556325$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to acos(x) - sqrt(1 - 3*x^3/10).
$$- \sqrt{1 - \frac{3 \cdot 0^{3}}{10}} + \operatorname{acos}{\left(0 \right)}$$
The result:
$$f{\left(0 \right)} = -1 + \frac{\pi}{2}$$
The point:
(0, -1 + pi/2)
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty}\left(- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)}\right) = -\infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)}\right) = - \infty i$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of acos(x) - sqrt(1 - 3*x^3/10), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)}}{x}\right) = \infty$$
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)}}{x}\right) = - \infty i$$
Let's take the limit
so,
inclined asymptote on the right doesn’t exist
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)} = - \sqrt{\frac{3 x^{3}}{10} + 1} + \operatorname{acos}{\left(- x \right)}$$
- No
$$- \sqrt{1 - \frac{3 x^{3}}{10}} + \operatorname{acos}{\left(x \right)} = \sqrt{\frac{3 x^{3}}{10} + 1} - \operatorname{acos}{\left(- x \right)}$$
- No
so, the function
not is
neither even, nor odd