Mister Exam

Other calculators

Graphing y = abs(x^2-2*abs(x)-3)

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
       | 2            |
f(x) = |x  - 2*|x| - 3|
$$f{\left(x \right)} = \left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right|$$
f = Abs(x^2 - 2*|x| - 3)
The graph of the function
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right| = 0$$
Solve this equation
The points of intersection with the axis X:

Analytical solution
$$x_{1} = -3$$
$$x_{2} = 3$$
Numerical solution
$$x_{1} = 3$$
$$x_{2} = -3$$
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to Abs(x^2 - 2*|x| - 3).
$$\left|{-3 + \left(0^{2} - 2 \left|{0}\right|\right)}\right|$$
The result:
$$f{\left(0 \right)} = 3$$
The point:
(0, 3)
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0$$
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
$$\frac{d^{2}}{d x^{2}} f{\left(x \right)} = $$
the second derivative
$$2 \left(4 \left(x - \operatorname{sign}{\left(x \right)}\right)^{2} \delta\left(- x^{2} + 2 \left|{x}\right| + 3\right) + \left(2 \delta\left(x\right) - 1\right) \operatorname{sign}{\left(- x^{2} + 2 \left|{x}\right| + 3 \right)}\right) = 0$$
Solve this equation
Solutions are not found,
maybe, the function has no inflections
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
$$\lim_{x \to -\infty} \left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right| = \infty$$
Let's take the limit
so,
horizontal asymptote on the left doesn’t exist
$$\lim_{x \to \infty} \left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right| = \infty$$
Let's take the limit
so,
horizontal asymptote on the right doesn’t exist
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of Abs(x^2 - 2*|x| - 3), divided by x at x->+oo and x ->-oo
$$\lim_{x \to -\infty}\left(\frac{\left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right|}{x}\right) = -\infty$$
Let's take the limit
so,
inclined asymptote on the left doesn’t exist
$$\lim_{x \to \infty}\left(\frac{\left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right|}{x}\right) = \infty$$
Let's take the limit
so,
inclined asymptote on the right doesn’t exist
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
$$\left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right| = \left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right|$$
- Yes
$$\left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right| = - \left|{\left(x^{2} - 2 \left|{x}\right|\right) - 3}\right|$$
- No
so, the function
is
even