In order to find the extrema, we need to solve the equation
dxdf(x)=0(the derivative equals zero),
and the roots of this equation are the extrema of this function:
dxdf(x)=the first derivativecos(x+3π)sign(sin(x+3π))=0Solve this equationThe roots of this equation
x1=9.94837673636768x2=−56.025068989018x3=57.0722665402146x4=−15.1843644923507x5=60.2138591938044x6=82.2050077689329x7=−37.1755130674792x8=−52.8834763354282x9=85.3466004225227x10=−84.2994028713261x11=−87.4409955249159x12=38.2227106186758x13=−90.5825881785057x14=66.497044500984x15=31.9395253114962x16=16.2315620435473x17=22.5147473507269x18=28.7979326579064x19=−24.60914245312x20=0.523598775598299x21=−46.6002910282486x22=−78.0162175641465x23=88.4881930761125x24=−68.5914396033772x25=−8.90117918517108x26=13.0899693899575x27=44.5058959258554x28=79.0634151153431x29=−65.4498469497874x30=69.6386371545737x31=−442.440965380563x32=19.3731546971371x33=−34.0339204138894x34=−74.8746249105567x35=91.6297857297023x36=−49.7418836818384x37=−2.61799387799149x38=−81.1578102177363x39=6.80678408277789x40=72.7802298081635x41=−43.4586983746588x42=−5.75958653158129x43=−30.8923277602996x44=35.081117965086x45=−40.317105721069x46=97.9129710368819x47=−96.8657734856853x48=−12.0427718387609x49=−62.3082542961976x50=−93.7241808320955x51=−18.3259571459405x52=101.054563690472x53=94.7713783832921x54=53.9306738866248x55=25.6563400043166x56=3.66519142918809x57=−71.733032256967x58=−59.1666616426078x59=47.6474885794452x60=−27.7507351067098x61=75.9218224617533x62=41.3643032722656x63=−21.4675497995303x64=−100.007366139275x65=50.789081233035x66=63.3554518473942The values of the extrema at the points:
/ pi\
(9.94837673636768, -sin|9.94837673636768 + --|)
\ 3 /
/ pi\
(-56.02506898901798, -sin|56.025068989018 - --|)
\ 3 /
/ pi\
(57.07226654021458, sin|57.0722665402146 + --|)
\ 3 /
/ pi\
(-15.184364492350667, sin|15.1843644923507 - --|)
\ 3 /
/ pi\
(60.21385919380437, -sin|60.2138591938044 + --|)
\ 3 /
/ pi\
(82.20500776893293, sin|82.2050077689329 + --|)
\ 3 /
/ pi\
(-37.17551306747922, -sin|37.1755130674792 - --|)
\ 3 /
/ pi\
(-52.883476335428185, sin|52.8834763354282 - --|)
\ 3 /
/ pi\
(85.34660042252271, -sin|85.3466004225227 + --|)
\ 3 /
/ pi\
(-84.29940287132612, sin|84.2994028713261 - --|)
\ 3 /
/ pi\
(-87.4409955249159, -sin|87.4409955249159 - --|)
\ 3 /
/ pi\
(38.22271061867582, sin|38.2227106186758 + --|)
\ 3 /
/ pi\
(-90.5825881785057, sin|90.5825881785057 - --|)
\ 3 /
/ pi\
(66.49704450098396, -sin|66.497044500984 + --|)
\ 3 /
/ pi\
(31.939525311496233, sin|31.9395253114962 + --|)
\ 3 /
/ pi\
(16.231562043547264, -sin|16.2315620435473 + --|)
\ 3 /
/ pi\
(22.51474735072685, -sin|22.5147473507269 + --|)
\ 3 /
/ pi\
(28.797932657906436, -sin|28.7979326579064 + --|)
\ 3 /
/ pi\
(-24.609142453120047, -sin|24.60914245312 - --|)
\ 3 /
/ pi\
(0.5235987755982989, sin|0.523598775598299 + --|)
\ 3 /
/ pi\
(-46.6002910282486, sin|46.6002910282486 - --|)
\ 3 /
/ pi\
(-78.01621756414653, sin|78.0162175641465 - --|)
\ 3 /
/ pi\
(88.48819307611251, sin|88.4881930761125 + --|)
\ 3 /
/ pi\
(-68.59143960337715, -sin|68.5914396033772 - --|)
\ 3 /
/ pi\
(-8.901179185171081, sin|8.90117918517108 - --|)
\ 3 /
/ pi\
(13.089969389957473, sin|13.0899693899575 + --|)
\ 3 /
/ pi\
(44.505895925855405, sin|44.5058959258554 + --|)
\ 3 /
/ pi\
(79.06341511534313, -sin|79.0634151153431 + --|)
\ 3 /
/ pi\
(-65.44984694978736, sin|65.4498469497874 - --|)
\ 3 /
/ pi\
(69.63863715457374, sin|69.6386371545737 + --|)
\ 3 /
/ pi\
(-442.44096538056255, sin|442.440965380563 - --|)
\ 3 /
/ pi\
(19.373154697137057, sin|19.3731546971371 + --|)
\ 3 /
/ pi\
(-34.033920413889426, sin|34.0339204138894 - --|)
\ 3 /
/ pi\
(-74.87462491055673, -sin|74.8746249105567 - --|)
\ 3 /
/ pi\
(91.6297857297023, -sin|91.6297857297023 + --|)
\ 3 /
/ pi\
(-49.741883681838395, -sin|49.7418836818384 - --|)
\ 3 /
/ pi\
(-2.6179938779914944, sin|2.61799387799149 - --|)
\ 3 /
/ pi\
(-81.15781021773633, -sin|81.1578102177363 - --|)
\ 3 /
/ pi\
(6.806784082777885, sin|6.80678408277789 + --|)
\ 3 /
/ pi\
(72.78022980816354, -sin|72.7802298081635 + --|)
\ 3 /
/ pi\
(-43.45869837465881, -sin|43.4586983746588 - --|)
\ 3 /
/ pi\
(-5.759586531581288, -sin|5.75958653158129 - --|)
\ 3 /
/ pi\
(-30.892327760299633, -sin|30.8923277602996 - --|)
\ 3 /
/ pi\
(35.08111796508602, -sin|35.081117965086 + --|)
\ 3 /
/ pi\
(-40.31710572106901, sin|40.317105721069 - --|)
\ 3 /
/ pi\
(97.91297103688188, -sin|97.9129710368819 + --|)
\ 3 /
/ pi\
(-96.8657734856853, sin|96.8657734856853 - --|)
\ 3 /
/ pi\
(-12.042771838760874, -sin|12.0427718387609 - --|)
\ 3 /
/ pi\
(-62.30825429619757, -sin|62.3082542961976 - --|)
\ 3 /
/ pi\
(-93.7241808320955, -sin|93.7241808320955 - --|)
\ 3 /
/ pi\
(-18.32595714594046, -sin|18.3259571459405 - --|)
\ 3 /
/ pi\
(101.05456369047168, sin|101.054563690472 + --|)
\ 3 /
/ pi\
(94.7713783832921, sin|94.7713783832921 + --|)
\ 3 /
/ pi\
(53.93067388662478, -sin|53.9306738866248 + --|)
\ 3 /
/ pi\
(25.656340004316643, sin|25.6563400043166 + --|)
\ 3 /
/ pi\
(3.6651914291880923, -sin|3.66519142918809 + --|)
\ 3 /
/ pi\
(-71.73303225696695, sin|71.733032256967 - --|)
\ 3 /
/ pi\
(-59.16666164260777, sin|59.1666616426078 - --|)
\ 3 /
/ pi\
(47.647488579445195, -sin|47.6474885794452 + --|)
\ 3 /
/ pi\
(-27.75073510670984, sin|27.7507351067098 - --|)
\ 3 /
/ pi\
(75.92182246175334, sin|75.9218224617533 + --|)
\ 3 /
/ pi\
(41.36430327226561, -sin|41.3643032722656 + --|)
\ 3 /
/ pi\
(-21.467549799530254, sin|21.4675497995303 - --|)
\ 3 /
/ pi\
(-100.00736613927508, -sin|100.007366139275 - --|)
\ 3 /
/ pi\
(50.78908123303499, sin|50.789081233035 + --|)
\ 3 /
/ pi\
(63.355451847394164, sin|63.3554518473942 + --|)
\ 3 /
Intervals of increase and decrease of the function:Let's find intervals where the function increases and decreases, as well as minima and maxima of the function, for this let's look how the function behaves itself in the extremas and at the slightest deviation from:
The function has no minima
Maxima of the function at points:
x66=9.94837673636768x66=−56.025068989018x66=57.0722665402146x66=−15.1843644923507x66=60.2138591938044x66=82.2050077689329x66=−37.1755130674792x66=−52.8834763354282x66=85.3466004225227x66=−84.2994028713261x66=−87.4409955249159x66=38.2227106186758x66=−90.5825881785057x66=66.497044500984x66=31.9395253114962x66=16.2315620435473x66=22.5147473507269x66=28.7979326579064x66=−24.60914245312x66=0.523598775598299x66=−46.6002910282486x66=−78.0162175641465x66=88.4881930761125x66=−68.5914396033772x66=−8.90117918517108x66=13.0899693899575x66=44.5058959258554x66=79.0634151153431x66=−65.4498469497874x66=69.6386371545737x66=−442.440965380563x66=19.3731546971371x66=−34.0339204138894x66=−74.8746249105567x66=91.6297857297023x66=−49.7418836818384x66=−2.61799387799149x66=−81.1578102177363x66=6.80678408277789x66=72.7802298081635x66=−43.4586983746588x66=−5.75958653158129x66=−30.8923277602996x66=35.081117965086x66=−40.317105721069x66=97.9129710368819x66=−96.8657734856853x66=−12.0427718387609x66=−62.3082542961976x66=−93.7241808320955x66=−18.3259571459405x66=101.054563690472x66=94.7713783832921x66=53.9306738866248x66=25.6563400043166x66=3.66519142918809x66=−71.733032256967x66=−59.1666616426078x66=47.6474885794452x66=−27.7507351067098x66=75.9218224617533x66=41.3643032722656x66=−21.4675497995303x66=−100.007366139275x66=50.789081233035x66=63.3554518473942Decreasing at intervals
(−∞,−442.440965380563]Increasing at intervals
[101.054563690472,∞)