Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$4 \cos{\left(\frac{3 x + 1}{5} \right)} - 1 = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = - \frac{1}{3} + \frac{5 \operatorname{acos}{\left(\frac{1}{4} \right)}}{3}$$
$$x_{2} = - \frac{5 \operatorname{acos}{\left(\frac{1}{4} \right)}}{3} - \frac{1}{3} + \frac{10 \pi}{3}$$
Numerical solution$$x_{1} = -159.609826132244$$
$$x_{2} = 33.279453321986$$
$$x_{3} = -86.3059975484825$$
$$x_{4} = 75.1673553698499$$
$$x_{5} = 85.6393308818159$$
$$x_{6} = -369.049336371564$$
$$x_{7} = -81.9122773096398$$
$$x_{8} = -71.4403017976738$$
$$x_{9} = -1028.78379362542$$
$$x_{10} = 64.6953798578839$$
$$x_{11} = 60.3016596190412$$
$$x_{12} = -23.4741444766867$$
$$x_{13} = -19.0804242378439$$
$$x_{14} = -50.4963507737419$$
$$x_{15} = -92.3842528216058$$
$$x_{16} = -65.3620465245506$$
$$x_{17} = -96.7779730604485$$
$$x_{18} = 102.189561666905$$
$$x_{19} = 96.1113063937818$$
$$x_{20} = 54.2234043459179$$
$$x_{21} = 7.94178205921128$$
$$x_{22} = -8.60844872587795$$
$$x_{23} = 81.2456106429731$$
$$x_{24} = -29.5523997498099$$
$$x_{25} = -54.8900710125846$$
$$x_{26} = 49.8296841070752$$
$$x_{27} = -2.5301934527547$$
$$x_{28} = -33.9461199886526$$
$$x_{29} = -75.8340220365165$$
$$x_{30} = 39.3577085951092$$
$$x_{31} = -44.4180955006186$$
$$x_{32} = -60.9683262857078$$
$$x_{33} = 12.335502298054$$
$$x_{34} = -40.0243752617759$$
$$x_{35} = -13.0021689647207$$
$$x_{36} = 1.86352678608803$$
$$x_{37} = 91.7175861549391$$
$$x_{38} = 22.80747781002$$
$$x_{39} = 28.8857330831432$$
$$x_{40} = 70.7736351310071$$
$$x_{41} = 18.4137575711773$$
$$x_{42} = 43.7514288339519$$