Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
$$\sqrt{3 \sin{\left(x \right)}} + \cos{\left(x \right)} = 0$$
Solve this equationThe points of intersection with the axis X:
Analytical solution$$x_{1} = 2 \operatorname{atan}{\left(\frac{3}{2} + \frac{\sqrt{13}}{2} + \frac{\sqrt{6} \sqrt{3 + \sqrt{13}}}{2} \right)}$$
Numerical solution$$x_{1} = 21.6835449255978$$
$$x_{2} = -34.8651228390184$$
$$x_{3} = -78.8474199892755$$
$$x_{4} = -3.4491963031205$$
$$x_{5} = -28.5819375318389$$
$$x_{6} = 2.83398900405908$$
$$x_{7} = -16.0155669174797$$
$$x_{8} = -85.1306052964551$$
$$x_{9} = 78.2322126902141$$
$$x_{10} = 46.8162861543162$$
$$x_{11} = 59.3826567686754$$
$$x_{12} = -41.148308146198$$
$$x_{13} = -47.4314934533776$$
$$x_{14} = -59.9978640677368$$
$$x_{15} = 53.0994714614958$$
$$x_{16} = -91.4137906036347$$
$$x_{17} = -22.2987522246593$$
$$x_{18} = 84.5153979973937$$
$$x_{19} = 40.5331008471366$$
$$x_{20} = 97.0817686117529$$
$$x_{21} = 65.6658420758549$$
$$x_{22} = 71.9490273830345$$
$$x_{23} = -53.7146787605572$$
$$x_{24} = -97.6969759108143$$
$$x_{25} = -9.73238161030009$$
$$x_{26} = 90.7985833045733$$
$$x_{27} = 9.11717431123867$$
$$x_{28} = -66.2810493749164$$
$$x_{29} = -72.564234682096$$
$$x_{30} = 34.249915539957$$
$$x_{31} = 27.9667302327774$$
$$x_{32} = 15.4003596184183$$