Given the equation:
$$z^{3} + 6 z + 20 = 0$$
transform
$$z^{3} + 6 z + 20 = 0$$
or
$$z^{3} + 6 z + 20 = 0$$
$$z^{3} + 6 z + 20 = 0$$
$$\left(z + 2\right) \left(z^{2} - 2 z + 4\right) + 6 z + 12 = 0$$
Take common factor $z + 2$ from the equation
we get:
$$\left(z + 2\right) \left(z^{2} - 2 z + 10\right) = 0$$
or
$$\left(z + 2\right) \left(z^{2} - 2 z + 10\right) = 0$$
then:
$$z_{1} = -2$$
and also
we get the equation
$$z^{2} - 2 z + 10 = 0$$
This equation is of the form
$$a*z^2 + b*z + c = 0$$
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
$$z_{2} = \frac{\sqrt{D} - b}{2 a}$$
$$z_{3} = \frac{- \sqrt{D} - b}{2 a}$$
where $D = b^2 - 4 a c$ is the discriminant.
Because
$$a = 1$$
$$b = -2$$
$$c = 10$$
, then
$$D = b^2 - 4 * a * c = $$
$$\left(-1\right) 1 \cdot 4 \cdot 10 + \left(-2\right)^{2} = -36$$
Because D<0, then the equation
has no real roots,
but complex roots is exists.
$$z_2 = \frac{(-b + \sqrt{D})}{2 a}$$
$$z_3 = \frac{(-b - \sqrt{D})}{2 a}$$
or
$$z_{2} = 1 + 3 i$$
Simplify$$z_{3} = 1 - 3 i$$
SimplifyThe final answer for (z^3 + 6*z + 20) + 0 = 0:
$$z_{1} = -2$$
$$z_{2} = 1 + 3 i$$
$$z_{3} = 1 - 3 i$$