Mister Exam

Other calculators


z^4+1=0

z^4+1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4        
z  + 1 = 0
$$z^{4} + 1 = 0$$
Detail solution
Given the equation
$$z^{4} + 1 = 0$$
Because equation degree is equal to = 4 and the free term = -1 < 0,
so the real solutions of the equation d'not exist

All other 4 root(s) is the complex numbers.
do replacement:
$$w = z$$
then the equation will be the:
$$w^{4} = -1$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{4} e^{4 i p} = -1$$
where
$$r = 1$$
- the magnitude of the complex number
Substitute r:
$$e^{4 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = -1$$
so
$$\cos{\left(4 p \right)} = -1$$
and
$$\sin{\left(4 p \right)} = 0$$
then
$$p = \frac{\pi N}{2} + \frac{\pi}{4}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = - \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
$$w_{2} = - \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
$$w_{3} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
$$w_{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
do backward replacement
$$w = z$$
$$z = w$$

The final answer:
$$z_{1} = - \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
$$z_{2} = - \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
$$z_{3} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
$$z_{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
The graph
Sum and product of roots [src]
sum
    ___       ___       ___       ___     ___       ___     ___       ___
  \/ 2    I*\/ 2      \/ 2    I*\/ 2    \/ 2    I*\/ 2    \/ 2    I*\/ 2 
- ----- - ------- + - ----- + ------- + ----- - ------- + ----- + -------
    2        2          2        2        2        2        2        2   
$$\left(\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}\right) + \left(\left(- \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}\right) + \left(- \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}\right)\right)\right) + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}\right)$$
=
0
$$0$$
product
/    ___       ___\ /    ___       ___\ /  ___       ___\ /  ___       ___\
|  \/ 2    I*\/ 2 | |  \/ 2    I*\/ 2 | |\/ 2    I*\/ 2 | |\/ 2    I*\/ 2 |
|- ----- - -------|*|- ----- + -------|*|----- - -------|*|----- + -------|
\    2        2   / \    2        2   / \  2        2   / \  2        2   /
$$\left(- \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}\right) \left(- \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}\right) \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}\right) \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}\right)$$
=
1
$$1$$
1
Rapid solution [src]
         ___       ___
       \/ 2    I*\/ 2 
z1 = - ----- - -------
         2        2   
$$z_{1} = - \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
         ___       ___
       \/ 2    I*\/ 2 
z2 = - ----- + -------
         2        2   
$$z_{2} = - \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
       ___       ___
     \/ 2    I*\/ 2 
z3 = ----- - -------
       2        2   
$$z_{3} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2} i}{2}$$
       ___       ___
     \/ 2    I*\/ 2 
z4 = ----- + -------
       2        2   
$$z_{4} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2} i}{2}$$
z4 = sqrt(2)/2 + sqrt(2)*i/2
Numerical answer [src]
z1 = -0.707106781186548 - 0.707106781186548*i
z2 = 0.707106781186548 + 0.707106781186548*i
z3 = -0.707106781186548 + 0.707106781186548*i
z4 = 0.707106781186548 - 0.707106781186548*i
z4 = 0.707106781186548 - 0.707106781186548*i
The graph
z^4+1=0 equation