Mister Exam

Other calculators


z^4-1=0

z^4-1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4        
z  - 1 = 0
z41=0z^{4} - 1 = 0
Detail solution
Given the equation
z41=0z^{4} - 1 = 0
Because equation degree is equal to = 4 - contains the even number 4 in the numerator, then
the equation has two real roots.
Get the root 4-th degree of the equation sides:
We get:
z44=14\sqrt[4]{z^{4}} = \sqrt[4]{1}
z44=(1)14\sqrt[4]{z^{4}} = \left(-1\right) \sqrt[4]{1}
or
z=1z = 1
z=1z = -1
We get the answer: z = 1
We get the answer: z = -1
or
z1=1z_{1} = -1
z2=1z_{2} = 1

All other 2 root(s) is the complex numbers.
do replacement:
w=zw = z
then the equation will be the:
w4=1w^{4} = 1
Any complex number can presented so:
w=reipw = r e^{i p}
substitute to the equation
r4e4ip=1r^{4} e^{4 i p} = 1
where
r=1r = 1
- the magnitude of the complex number
Substitute r:
e4ip=1e^{4 i p} = 1
Using Euler’s formula, we find roots for p
isin(4p)+cos(4p)=1i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = 1
so
cos(4p)=1\cos{\left(4 p \right)} = 1
and
sin(4p)=0\sin{\left(4 p \right)} = 0
then
p=πN2p = \frac{\pi N}{2}
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
w1=1w_{1} = -1
w2=1w_{2} = 1
w3=iw_{3} = - i
w4=iw_{4} = i
do backward replacement
w=zw = z
z=wz = w

The final answer:
z1=1z_{1} = -1
z2=1z_{2} = 1
z3=iz_{3} = - i
z4=iz_{4} = i
The graph
05-15-10-51015-2000020000
Sum and product of roots [src]
sum
-1 + 1 - I + I
((1+1)i)+i\left(\left(-1 + 1\right) - i\right) + i
=
0
00
product
-(-I)*I
i((1)i)i \left(- \left(-1\right) i\right)
=
-1
1-1
-1
Rapid solution [src]
z1 = -1
z1=1z_{1} = -1
z2 = 1
z2=1z_{2} = 1
z3 = -I
z3=iz_{3} = - i
z4 = I
z4=iz_{4} = i
z4 = i
Numerical answer [src]
z1 = 1.0
z2 = 1.0*i
z3 = -1.0
z4 = -1.0*i
z4 = -1.0*i
The graph
z^4-1=0 equation