Mister Exam

Other calculators

z^4-2z^2+4=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4      2        
z  - 2*z  + 4 = 0
$$\left(z^{4} - 2 z^{2}\right) + 4 = 0$$
Detail solution
Given the equation:
$$\left(z^{4} - 2 z^{2}\right) + 4 = 0$$
Do replacement
$$v = z^{2}$$
then the equation will be the:
$$v^{2} - 2 v + 4 = 0$$
This equation is of the form
a*v^2 + b*v + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -2$$
$$c = 4$$
, then
D = b^2 - 4 * a * c = 

(-2)^2 - 4 * (1) * (4) = -12

Because D<0, then the equation
has no real roots,
but complex roots is exists.
v1 = (-b + sqrt(D)) / (2*a)

v2 = (-b - sqrt(D)) / (2*a)

or
$$v_{1} = 1 + \sqrt{3} i$$
$$v_{2} = 1 - \sqrt{3} i$$
The final answer:
Because
$$v = z^{2}$$
then
$$z_{1} = \sqrt{v_{1}}$$
$$z_{2} = - \sqrt{v_{1}}$$
$$z_{3} = \sqrt{v_{2}}$$
$$z_{4} = - \sqrt{v_{2}}$$
then:
$$z_{1} = $$
$$\frac{0}{1} + \frac{\left(1 + \sqrt{3} i\right)^{\frac{1}{2}}}{1} = \sqrt{1 + \sqrt{3} i}$$
$$z_{2} = $$
$$\frac{0}{1} + \frac{\left(-1\right) \left(1 + \sqrt{3} i\right)^{\frac{1}{2}}}{1} = - \sqrt{1 + \sqrt{3} i}$$
$$z_{3} = $$
$$\frac{0}{1} + \frac{\left(1 - \sqrt{3} i\right)^{\frac{1}{2}}}{1} = \sqrt{1 - \sqrt{3} i}$$
$$z_{4} = $$
$$\frac{0}{1} + \frac{\left(-1\right) \left(1 - \sqrt{3} i\right)^{\frac{1}{2}}}{1} = - \sqrt{1 - \sqrt{3} i}$$
The graph
Rapid solution [src]
         ___       ___
       \/ 6    I*\/ 2 
z1 = - ----- - -------
         2        2   
$$z_{1} = - \frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}$$
         ___       ___
       \/ 6    I*\/ 2 
z2 = - ----- + -------
         2        2   
$$z_{2} = - \frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}$$
       ___       ___
     \/ 6    I*\/ 2 
z3 = ----- - -------
       2        2   
$$z_{3} = \frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}$$
       ___       ___
     \/ 6    I*\/ 2 
z4 = ----- + -------
       2        2   
$$z_{4} = \frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}$$
z4 = sqrt(6)/2 + sqrt(2)*i/2
Sum and product of roots [src]
sum
    ___       ___       ___       ___     ___       ___     ___       ___
  \/ 6    I*\/ 2      \/ 6    I*\/ 2    \/ 6    I*\/ 2    \/ 6    I*\/ 2 
- ----- - ------- + - ----- + ------- + ----- - ------- + ----- + -------
    2        2          2        2        2        2        2        2   
$$\left(\left(\frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right) + \left(\left(- \frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right) + \left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right)\right)\right) + \left(\frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right)$$
=
0
$$0$$
product
/    ___       ___\ /    ___       ___\ /  ___       ___\ /  ___       ___\
|  \/ 6    I*\/ 2 | |  \/ 6    I*\/ 2 | |\/ 6    I*\/ 2 | |\/ 6    I*\/ 2 |
|- ----- - -------|*|- ----- + -------|*|----- - -------|*|----- + -------|
\    2        2   / \    2        2   / \  2        2   / \  2        2   /
$$\left(- \frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right) \left(- \frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right) \left(\frac{\sqrt{6}}{2} - \frac{\sqrt{2} i}{2}\right) \left(\frac{\sqrt{6}}{2} + \frac{\sqrt{2} i}{2}\right)$$
=
4
$$4$$
4
Numerical answer [src]
z1 = -1.22474487139159 + 0.707106781186548*i
z2 = -1.22474487139159 - 0.707106781186548*i
z3 = 1.22474487139159 + 0.707106781186548*i
z4 = 1.22474487139159 - 0.707106781186548*i
z4 = 1.22474487139159 - 0.707106781186548*i