Mister Exam

Other calculators

z^4=-8-8*(sqrt(3))*i equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4            ___  
z  = -8 - 8*\/ 3 *I
$$z^{4} = -8 - 8 \sqrt{3} i$$
Detail solution
Given the equation
$$z^{4} = -8 - 8 \sqrt{3} i$$
Because equation degree is equal to = 4 and the free term = -8 - 8*i*sqrt(3) complex,
so the real solutions of the equation d'not exist

All other 4 root(s) is the complex numbers.
do replacement:
$$w = z$$
then the equation will be the:
$$w^{4} = -8 - 8 \sqrt{3} i$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{4} e^{4 i p} = -8 - 8 \sqrt{3} i$$
where
$$r = 2$$
- the magnitude of the complex number
Substitute r:
$$e^{4 i p} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = - \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
so
$$\cos{\left(4 p \right)} = - \frac{1}{2}$$
and
$$\sin{\left(4 p \right)} = - \frac{\sqrt{3}}{2}$$
then
$$p = \frac{\pi N}{2} + \frac{\pi}{12}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = -1 - \sqrt{3} i$$
$$w_{2} = 1 + \sqrt{3} i$$
$$w_{3} = - \sqrt{3} + i$$
$$w_{4} = \sqrt{3} - i$$
do backward replacement
$$w = z$$
$$z = w$$

The final answer:
$$z_{1} = -1 - \sqrt{3} i$$
$$z_{2} = 1 + \sqrt{3} i$$
$$z_{3} = - \sqrt{3} + i$$
$$z_{4} = \sqrt{3} - i$$
The graph
Sum and product of roots [src]
sum
         ___           ___         ___     ___    
-1 - I*\/ 3  + 1 + I*\/ 3  + I - \/ 3  + \/ 3  - I
$$\left(\sqrt{3} - i\right) + \left(\left(\left(-1 - \sqrt{3} i\right) + \left(1 + \sqrt{3} i\right)\right) + \left(- \sqrt{3} + i\right)\right)$$
=
0
$$0$$
product
/         ___\ /        ___\ /      ___\ /  ___    \
\-1 - I*\/ 3 /*\1 + I*\/ 3 /*\I - \/ 3 /*\\/ 3  - I/
$$\left(-1 - \sqrt{3} i\right) \left(1 + \sqrt{3} i\right) \left(- \sqrt{3} + i\right) \left(\sqrt{3} - i\right)$$
=
          ___
8 + 8*I*\/ 3 
$$8 + 8 \sqrt{3} i$$
8 + 8*i*sqrt(3)
Rapid solution [src]
              ___
z1 = -1 - I*\/ 3 
$$z_{1} = -1 - \sqrt{3} i$$
             ___
z2 = 1 + I*\/ 3 
$$z_{2} = 1 + \sqrt{3} i$$
           ___
z3 = I - \/ 3 
$$z_{3} = - \sqrt{3} + i$$
       ___    
z4 = \/ 3  - I
$$z_{4} = \sqrt{3} - i$$
z4 = sqrt(3) - i
Numerical answer [src]
z1 = 1.0 + 1.73205080756888*i
z2 = -1.73205080756888 + 1.0*i
z3 = -1.0 - 1.73205080756888*i
z4 = 1.73205080756888 - 1.0*i
z4 = 1.73205080756888 - 1.0*i