(z+sqrt(2))^4=-16 equation
The teacher will be very surprised to see your correct solution 😉
The solution
Detail solution
Given the equation
$$\left(z + \sqrt{2}\right)^{4} = -16$$
Because equation degree is equal to = 4 and the free term = -16 < 0,
so the real solutions of the equation d'not exist
All other 4 root(s) is the complex numbers.
do replacement:
$$w = z + \sqrt{2}$$
then the equation will be the:
$$w^{4} = -16$$
Any complex number can presented so:
$$w = r e^{i p}$$
substitute to the equation
$$r^{4} e^{4 i p} = -16$$
where
$$r = 2$$
- the magnitude of the complex number
Substitute r:
$$e^{4 i p} = -1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(4 p \right)} + \cos{\left(4 p \right)} = -1$$
so
$$\cos{\left(4 p \right)} = -1$$
and
$$\sin{\left(4 p \right)} = 0$$
then
$$p = \frac{\pi N}{2} + \frac{\pi}{4}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for w
Consequently, the solution will be for w:
$$w_{1} = - \sqrt{2} - \sqrt{2} i$$
$$w_{2} = - \sqrt{2} + \sqrt{2} i$$
$$w_{3} = \sqrt{2} - \sqrt{2} i$$
$$w_{4} = \sqrt{2} + \sqrt{2} i$$
do backward replacement
$$w = z + \sqrt{2}$$
$$z = w - \sqrt{2}$$
The final answer:
$$z_{1} = - 2 \sqrt{2} - \sqrt{2} i$$
$$z_{2} = - 2 \sqrt{2} + \sqrt{2} i$$
$$z_{3} = - \sqrt{2} i$$
$$z_{4} = \sqrt{2} i$$
Sum and product of roots
[src]
___ ___ ___ ___ ___ ___
- I*\/ 2 + I*\/ 2 + - 2*\/ 2 - I*\/ 2 + - 2*\/ 2 + I*\/ 2
$$\left(\left(- 2 \sqrt{2} - \sqrt{2} i\right) + \left(- \sqrt{2} i + \sqrt{2} i\right)\right) + \left(- 2 \sqrt{2} + \sqrt{2} i\right)$$
$$- 4 \sqrt{2}$$
___ ___ / ___ ___\ / ___ ___\
-I*\/ 2 *I*\/ 2 *\- 2*\/ 2 - I*\/ 2 /*\- 2*\/ 2 + I*\/ 2 /
$$- \sqrt{2} i \sqrt{2} i \left(- 2 \sqrt{2} - \sqrt{2} i\right) \left(- 2 \sqrt{2} + \sqrt{2} i\right)$$
$$20$$
$$z_{1} = - \sqrt{2} i$$
$$z_{2} = \sqrt{2} i$$
___ ___
z3 = - 2*\/ 2 - I*\/ 2
$$z_{3} = - 2 \sqrt{2} - \sqrt{2} i$$
___ ___
z4 = - 2*\/ 2 + I*\/ 2
$$z_{4} = - 2 \sqrt{2} + \sqrt{2} i$$
z4 = -2*sqrt(2) + sqrt(2)*i
z1 = -2.82842712474619 + 1.4142135623731*i
z3 = -2.82842712474619 - 1.4142135623731*i