Mister Exam

Other calculators


x^2+4*x+1=0

x^2+4*x+1=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  + 4*x + 1 = 0
(x2+4x)+1=0\left(x^{2} + 4 x\right) + 1 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=4b = 4
c=1c = 1
, then
D = b^2 - 4 * a * c = 

(4)^2 - 4 * (1) * (1) = 12

Because D > 0, then the equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=2+3x_{1} = -2 + \sqrt{3}
x2=23x_{2} = -2 - \sqrt{3}
Vieta's Theorem
it is reduced quadratic equation
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=4p = 4
q=caq = \frac{c}{a}
q=1q = 1
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=4x_{1} + x_{2} = -4
x1x2=1x_{1} x_{2} = 1
The graph
05-20-15-10-510-200200
Rapid solution [src]
            ___
x1 = -2 - \/ 3 
x1=23x_{1} = -2 - \sqrt{3}
            ___
x2 = -2 + \/ 3 
x2=2+3x_{2} = -2 + \sqrt{3}
x2 = -2 + sqrt(3)
Sum and product of roots [src]
sum
       ___          ___
-2 - \/ 3  + -2 + \/ 3 
(23)+(2+3)\left(-2 - \sqrt{3}\right) + \left(-2 + \sqrt{3}\right)
=
-4
4-4
product
/       ___\ /       ___\
\-2 - \/ 3 /*\-2 + \/ 3 /
(23)(2+3)\left(-2 - \sqrt{3}\right) \left(-2 + \sqrt{3}\right)
=
1
11
1
Numerical answer [src]
x1 = -0.267949192431123
x2 = -3.73205080756888
x2 = -3.73205080756888
The graph
x^2+4*x+1=0 equation