Mister Exam

Other calculators


x^2-4*x+6=0

x^2-4*x+6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  - 4*x + 6 = 0
(x24x)+6=0\left(x^{2} - 4 x\right) + 6 = 0
Detail solution
This equation is of the form
a*x^2 + b*x + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D = b^2 - 4*a*c - it is the discriminant.
Because
a=1a = 1
b=4b = -4
c=6c = 6
, then
D = b^2 - 4 * a * c = 

(-4)^2 - 4 * (1) * (6) = -8

Because D<0, then the equation
has no real roots,
but complex roots is exists.
x1 = (-b + sqrt(D)) / (2*a)

x2 = (-b - sqrt(D)) / (2*a)

or
x1=2+2ix_{1} = 2 + \sqrt{2} i
x2=22ix_{2} = 2 - \sqrt{2} i
Vieta's Theorem
it is reduced quadratic equation
px+q+x2=0p x + q + x^{2} = 0
where
p=bap = \frac{b}{a}
p=4p = -4
q=caq = \frac{c}{a}
q=6q = 6
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=4x_{1} + x_{2} = 4
x1x2=6x_{1} x_{2} = 6
The graph
012345678-3-2-1020
Sum and product of roots [src]
sum
        ___           ___
2 - I*\/ 2  + 2 + I*\/ 2 
(22i)+(2+2i)\left(2 - \sqrt{2} i\right) + \left(2 + \sqrt{2} i\right)
=
4
44
product
/        ___\ /        ___\
\2 - I*\/ 2 /*\2 + I*\/ 2 /
(22i)(2+2i)\left(2 - \sqrt{2} i\right) \left(2 + \sqrt{2} i\right)
=
6
66
6
Rapid solution [src]
             ___
x1 = 2 - I*\/ 2 
x1=22ix_{1} = 2 - \sqrt{2} i
             ___
x2 = 2 + I*\/ 2 
x2=2+2ix_{2} = 2 + \sqrt{2} i
x2 = 2 + sqrt(2)*i
Numerical answer [src]
x1 = 2.0 - 1.4142135623731*i
x2 = 2.0 + 1.4142135623731*i
x2 = 2.0 + 1.4142135623731*i
The graph
x^2-4*x+6=0 equation