Mister Exam

Other calculators


x^2-4*x-6=0

x^2-4*x-6=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 2              
x  - 4*x - 6 = 0
x24x6=0x^{2} - 4 x - 6 = 0
Detail solution
This equation is of the form
a x2+b x+c=0a\ x^2 + b\ x + c = 0
A quadratic equation can be solved using the discriminant
The roots of the quadratic equation:
x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
where D=b24acD = b^2 - 4 a c is the discriminant.
Because
a=1a = 1
b=4b = -4
c=6c = -6
, then
D=b24 a c=D = b^2 - 4\ a\ c =
(4)214(6)=40\left(-4\right)^{2} - 1 \cdot 4 \left(-6\right) = 40
Because D > 0, then the equation has two roots.
x1=(b+D)2ax_1 = \frac{(-b + \sqrt{D})}{2 a}
x2=(bD)2ax_2 = \frac{(-b - \sqrt{D})}{2 a}
or
x1=2+10x_{1} = 2 + \sqrt{10}
Simplify
x2=10+2x_{2} = - \sqrt{10} + 2
Simplify
Vieta's Theorem
it is reduced quadratic equation
px+x2+q=0p x + x^{2} + q = 0
where
p=bap = \frac{b}{a}
p=4p = -4
q=caq = \frac{c}{a}
q=6q = -6
Vieta Formulas
x1+x2=px_{1} + x_{2} = - p
x1x2=qx_{1} x_{2} = q
x1+x2=4x_{1} + x_{2} = 4
x1x2=6x_{1} x_{2} = -6
The graph
05-15-10-5101520200-100
Rapid solution [src]
            ____
x_1 = 2 - \/ 10 
x1=10+2x_{1} = - \sqrt{10} + 2
            ____
x_2 = 2 + \/ 10 
x2=2+10x_{2} = 2 + \sqrt{10}
Sum and product of roots [src]
sum
      ____         ____
2 - \/ 10  + 2 + \/ 10 
(10+2)+(2+10)\left(- \sqrt{10} + 2\right) + \left(2 + \sqrt{10}\right)
=
4
44
product
      ____         ____
2 - \/ 10  * 2 + \/ 10 
(10+2)(2+10)\left(- \sqrt{10} + 2\right) * \left(2 + \sqrt{10}\right)
=
-6
6-6
Numerical answer [src]
x1 = 5.16227766016838
x2 = -1.16227766016838
x2 = -1.16227766016838
The graph
x^2-4*x-6=0 equation