A quadratic equation can be solved using the discriminant. The roots of the quadratic equation: x1=2aD−b x2=2a−D−b where D = b^2 - 4*a*c - it is the discriminant. Because a=1 b=0 c=−4i , then
D = b^2 - 4 * a * c =
(0)^2 - 4 * (1) * (-4*i) = 16*i
The equation has two roots.
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
or x1=2i x2=−2i
Vieta's Theorem
it is reduced quadratic equation px+q+x2=0 where p=ab p=0 q=ac q=−4i Vieta Formulas x1+x2=−p x1x2=q x1+x2=0 x1x2=−4i