Mister Exam

Other calculators


x^3=0.34

x^3=0.34 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3   17
x  = --
     50
$$x^{3} = \frac{17}{50}$$
Detail solution
Given the equation
$$x^{3} = \frac{17}{50}$$
Because equation degree is equal to = 3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 3-th degree of the equation sides:
We get:
$$\sqrt[3]{\left(1 x + 0\right)^{3}} = \sqrt[3]{\frac{17}{50}}$$
or
$$x = \frac{\sqrt[3]{340}}{10}$$
Expand brackets in the right part
x = 340^1/3/10

We get the answer: x = 340^(1/3)/10

All other 2 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{3} = \frac{17}{50}$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{3} e^{3 i p} = \frac{17}{50}$$
where
$$r = \frac{\sqrt[3]{340}}{10}$$
- the magnitude of the complex number
Substitute r:
$$e^{3 i p} = 1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1$$
so
$$\cos{\left(3 p \right)} = 1$$
and
$$\sin{\left(3 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = \frac{\sqrt[3]{340}}{10}$$
$$z_{2} = - \frac{\sqrt[3]{340}}{20} - \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
$$z_{3} = - \frac{\sqrt[3]{340}}{20} + \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = \frac{\sqrt[3]{340}}{10}$$
$$x_{2} = - \frac{\sqrt[3]{340}}{20} - \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
$$x_{3} = - \frac{\sqrt[3]{340}}{20} + \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = - \frac{17}{50}$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
$$x_{1} x_{2} x_{3} = - \frac{17}{50}$$
The graph
Sum and product of roots [src]
sum
    3 _____     3 _____       ___ 3 _____     3 _____       ___ 3 _____
    \/ 340      \/ 340    I*\/ 3 *\/ 340      \/ 340    I*\/ 3 *\/ 340 
0 + ------- + - ------- - --------------- + - ------- + ---------------
       10          20            20              20            20      
$$\left(\left(0 + \frac{\sqrt[3]{340}}{10}\right) - \left(\frac{\sqrt[3]{340}}{20} + \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}\right)\right) - \left(\frac{\sqrt[3]{340}}{20} - \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}\right)$$
=
0
$$0$$
product
  3 _____ /  3 _____       ___ 3 _____\ /  3 _____       ___ 3 _____\
  \/ 340  |  \/ 340    I*\/ 3 *\/ 340 | |  \/ 340    I*\/ 3 *\/ 340 |
1*-------*|- ------- - ---------------|*|- ------- + ---------------|
     10   \     20            20      / \     20            20      /
$$1 \cdot \frac{\sqrt[3]{340}}{10} \left(- \frac{\sqrt[3]{340}}{20} - \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}\right) \left(- \frac{\sqrt[3]{340}}{20} + \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}\right)$$
=
17
--
50
$$\frac{17}{50}$$
17/50
Rapid solution [src]
     3 _____
     \/ 340 
x1 = -------
        10  
$$x_{1} = \frac{\sqrt[3]{340}}{10}$$
       3 _____       ___ 3 _____
       \/ 340    I*\/ 3 *\/ 340 
x2 = - ------- - ---------------
          20            20      
$$x_{2} = - \frac{\sqrt[3]{340}}{20} - \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
       3 _____       ___ 3 _____
       \/ 340    I*\/ 3 *\/ 340 
x3 = - ------- + ---------------
          20            20      
$$x_{3} = - \frac{\sqrt[3]{340}}{20} + \frac{\sqrt{3} \cdot \sqrt[3]{340} i}{20}$$
Numerical answer [src]
x1 = -0.348976602345444 - 0.60444520591507*i
x2 = -0.348976602345444 + 0.60444520591507*i
x3 = 0.697953204690889
x3 = 0.697953204690889
The graph
x^3=0.34 equation