Mister Exam

Other calculators


x^3+2x+2=0

x^3+2x+2=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3              
x  + 2*x + 2 = 0
$$x^{3} + 2 x + 2 = 0$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + x^{3} + q x + v = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 2$$
$$v = \frac{d}{a}$$
$$v = 2$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 2$$
$$x_{1} x_{2} x_{3} = 2$$
The graph
Sum and product of roots [src]
sum
                               ________________     /                               ________________\                              ________________     /                                 ________________\                            ________________
                            3 /          _____      |         ___            ___ 3 /          _____ |                           3 /          _____      |           ___            ___ 3 /          _____ |                         3 /          _____ 
               1            \/  27 + 3*\/ 105       |       \/ 3           \/ 3 *\/  27 + 3*\/ 105  |              1            \/  27 + 3*\/ 105       |         \/ 3           \/ 3 *\/  27 + 3*\/ 105  |            2            \/  27 + 3*\/ 105  
0 + - ------------------- + ------------------- + I*|------------------- + -------------------------| + - ------------------- + ------------------- + I*|- ------------------- - -------------------------| + ------------------- - -------------------
         ________________            6              |   ________________               6            |        ________________            6              |     ________________               6            |      ________________            3         
      3 /          _____                            |3 /          _____                             |     3 /          _____                            |  3 /          _____                             |   3 /          _____                       
      \/  27 + 3*\/ 105                             \\/  27 + 3*\/ 105                              /     \/  27 + 3*\/ 105                             \  \/  27 + 3*\/ 105                              /   \/  27 + 3*\/ 105                        
$$\left(- \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{3} + \frac{2}{\sqrt[3]{27 + 3 \sqrt{105}}}\right) + \left(\left(- \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6} - \frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}}\right)\right) + \left(0 + \left(- \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(\frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6}\right)\right)\right)\right)$$
=
  /                               ________________\     /                                 ________________\
  |         ___            ___ 3 /          _____ |     |           ___            ___ 3 /          _____ |
  |       \/ 3           \/ 3 *\/  27 + 3*\/ 105  |     |         \/ 3           \/ 3 *\/  27 + 3*\/ 105  |
I*|------------------- + -------------------------| + I*|- ------------------- - -------------------------|
  |   ________________               6            |     |     ________________               6            |
  |3 /          _____                             |     |  3 /          _____                             |
  \\/  27 + 3*\/ 105                              /     \  \/  27 + 3*\/ 105                              /
$$i \left(- \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6} - \frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}}\right) + i \left(\frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6}\right)$$
product
  /                           ________________     /                               ________________\\ /                           ________________     /                                 ________________\\ /                         ________________\
  |                        3 /          _____      |         ___            ___ 3 /          _____ || |                        3 /          _____      |           ___            ___ 3 /          _____ || |                      3 /          _____ |
  |           1            \/  27 + 3*\/ 105       |       \/ 3           \/ 3 *\/  27 + 3*\/ 105  || |           1            \/  27 + 3*\/ 105       |         \/ 3           \/ 3 *\/  27 + 3*\/ 105  || |         2            \/  27 + 3*\/ 105  |
1*|- ------------------- + ------------------- + I*|------------------- + -------------------------||*|- ------------------- + ------------------- + I*|- ------------------- - -------------------------||*|------------------- - -------------------|
  |     ________________            6              |   ________________               6            || |     ________________            6              |     ________________               6            || |   ________________            3         |
  |  3 /          _____                            |3 /          _____                             || |  3 /          _____                            |  3 /          _____                             || |3 /          _____                       |
  \  \/  27 + 3*\/ 105                             \\/  27 + 3*\/ 105                              // \  \/  27 + 3*\/ 105                             \  \/  27 + 3*\/ 105                              // \\/  27 + 3*\/ 105                        /
$$1 \left(- \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(\frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6}\right)\right) \left(- \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6} - \frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}}\right)\right) \left(- \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{3} + \frac{2}{\sqrt[3]{27 + 3 \sqrt{105}}}\right)$$
=
-2
$$-2$$
-2
Rapid solution [src]
                                ________________     /                               ________________\
                             3 /          _____      |         ___            ___ 3 /          _____ |
                1            \/  27 + 3*\/ 105       |       \/ 3           \/ 3 *\/  27 + 3*\/ 105  |
x1 = - ------------------- + ------------------- + I*|------------------- + -------------------------|
          ________________            6              |   ________________               6            |
       3 /          _____                            |3 /          _____                             |
       \/  27 + 3*\/ 105                             \\/  27 + 3*\/ 105                              /
$$x_{1} = - \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(\frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6}\right)$$
                                ________________     /                                 ________________\
                             3 /          _____      |           ___            ___ 3 /          _____ |
                1            \/  27 + 3*\/ 105       |         \/ 3           \/ 3 *\/  27 + 3*\/ 105  |
x2 = - ------------------- + ------------------- + I*|- ------------------- - -------------------------|
          ________________            6              |     ________________               6            |
       3 /          _____                            |  3 /          _____                             |
       \/  27 + 3*\/ 105                             \  \/  27 + 3*\/ 105                              /
$$x_{2} = - \frac{1}{\sqrt[3]{27 + 3 \sqrt{105}}} + \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{6} + i \left(- \frac{\sqrt{3} \sqrt[3]{27 + 3 \sqrt{105}}}{6} - \frac{\sqrt{3}}{\sqrt[3]{27 + 3 \sqrt{105}}}\right)$$
                              ________________
                           3 /          _____ 
              2            \/  27 + 3*\/ 105  
x3 = ------------------- - -------------------
        ________________            3         
     3 /          _____                       
     \/  27 + 3*\/ 105                        
$$x_{3} = - \frac{\sqrt[3]{27 + 3 \sqrt{105}}}{3} + \frac{2}{\sqrt[3]{27 + 3 \sqrt{105}}}$$
Numerical answer [src]
x1 = 0.385458498529624 + 1.56388451052696*i
x2 = 0.385458498529624 - 1.56388451052696*i
x3 = -0.770916997059248
x3 = -0.770916997059248
The graph
x^3+2x+2=0 equation