Mister Exam

Other calculators


x^3=3

x^3=3 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 3    
x  = 3
$$x^{3} = 3$$
Detail solution
Given the equation
$$x^{3} = 3$$
Because equation degree is equal to = 3 - does not contain even numbers in the numerator, then
the equation has single real root.
Get the root 3-th degree of the equation sides:
We get:
$$\sqrt[3]{x^{3}} = \sqrt[3]{3}$$
or
$$x = \sqrt[3]{3}$$
Expand brackets in the right part
x = 3^1/3

We get the answer: x = 3^(1/3)

All other 2 root(s) is the complex numbers.
do replacement:
$$z = x$$
then the equation will be the:
$$z^{3} = 3$$
Any complex number can presented so:
$$z = r e^{i p}$$
substitute to the equation
$$r^{3} e^{3 i p} = 3$$
where
$$r = \sqrt[3]{3}$$
- the magnitude of the complex number
Substitute r:
$$e^{3 i p} = 1$$
Using Euler’s formula, we find roots for p
$$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = 1$$
so
$$\cos{\left(3 p \right)} = 1$$
and
$$\sin{\left(3 p \right)} = 0$$
then
$$p = \frac{2 \pi N}{3}$$
where N=0,1,2,3,...
Looping through the values of N and substituting p into the formula for z
Consequently, the solution will be for z:
$$z_{1} = \sqrt[3]{3}$$
$$z_{2} = - \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2}$$
$$z_{3} = - \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2}$$
do backward replacement
$$z = x$$
$$x = z$$

The final answer:
$$x_{1} = \sqrt[3]{3}$$
$$x_{2} = - \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2}$$
$$x_{3} = - \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2}$$
Vieta's Theorem
it is reduced cubic equation
$$p x^{2} + q x + v + x^{3} = 0$$
where
$$p = \frac{b}{a}$$
$$p = 0$$
$$q = \frac{c}{a}$$
$$q = 0$$
$$v = \frac{d}{a}$$
$$v = -3$$
Vieta Formulas
$$x_{1} + x_{2} + x_{3} = - p$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
$$x_{1} x_{2} x_{3} = v$$
$$x_{1} + x_{2} + x_{3} = 0$$
$$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
$$x_{1} x_{2} x_{3} = -3$$
The graph
Rapid solution [src]
     3 ___
x1 = \/ 3 
$$x_{1} = \sqrt[3]{3}$$
       3 ___      5/6
       \/ 3    I*3   
x2 = - ----- - ------
         2       2   
$$x_{2} = - \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2}$$
       3 ___      5/6
       \/ 3    I*3   
x3 = - ----- + ------
         2       2   
$$x_{3} = - \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2}$$
x3 = -3^(1/3)/2 + 3^(5/6)*i/2
Sum and product of roots [src]
sum
          3 ___      5/6     3 ___      5/6
3 ___     \/ 3    I*3        \/ 3    I*3   
\/ 3  + - ----- - ------ + - ----- + ------
            2       2          2       2   
$$\left(\sqrt[3]{3} + \left(- \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2}\right)\right) + \left(- \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2}\right)$$
=
0
$$0$$
product
      /  3 ___      5/6\ /  3 ___      5/6\
3 ___ |  \/ 3    I*3   | |  \/ 3    I*3   |
\/ 3 *|- ----- - ------|*|- ----- + ------|
      \    2       2   / \    2       2   /
$$\sqrt[3]{3} \left(- \frac{\sqrt[3]{3}}{2} - \frac{3^{\frac{5}{6}} i}{2}\right) \left(- \frac{\sqrt[3]{3}}{2} + \frac{3^{\frac{5}{6}} i}{2}\right)$$
=
3
$$3$$
3
Numerical answer [src]
x1 = -0.721124785153704 + 1.24902476648341*i
x2 = 1.44224957030741
x3 = -0.721124785153704 - 1.24902476648341*i
x3 = -0.721124785153704 - 1.24902476648341*i
The graph
x^3=3 equation