Mister Exam

Other calculators


x^(log(x))=10

x^(log(x))=10 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 log(x)     
x       = 10
$$x^{\log{\left(x \right)}} = 10$$
The graph
Rapid solution [src]
         _________
      -\/ log(10) 
x1 = e            
$$x_{1} = e^{- \sqrt{\log{\left(10 \right)}}}$$
        _________
      \/ log(10) 
x2 = e           
$$x_{2} = e^{\sqrt{\log{\left(10 \right)}}}$$
x2 = exp(sqrt(log(10)))
Sum and product of roots [src]
sum
    _________      _________
 -\/ log(10)     \/ log(10) 
e             + e           
$$e^{- \sqrt{\log{\left(10 \right)}}} + e^{\sqrt{\log{\left(10 \right)}}}$$
=
   _________       _________
 \/ log(10)     -\/ log(10) 
e            + e            
$$e^{- \sqrt{\log{\left(10 \right)}}} + e^{\sqrt{\log{\left(10 \right)}}}$$
product
    _________    _________
 -\/ log(10)   \/ log(10) 
e            *e           
$$\frac{e^{\sqrt{\log{\left(10 \right)}}}}{e^{\sqrt{\log{\left(10 \right)}}}}$$
=
1
$$1$$
1
Numerical answer [src]
x1 = -25.2915347925395 + 6.54085266249859*i
x2 = -25.2915347925395 - 6.54085266249859*i
x3 = 4.56047657161819
x4 = 4.5604765716182
x4 = 4.5604765716182
The graph
x^(log(x))=10 equation