Mister Exam

Other calculators

x^4-169*x^2+3600=0 equation

The teacher will be very surprised to see your correct solution 😉

v

Numerical solution:

Do search numerical solution at [, ]

The solution

You have entered [src]
 4        2           
x  - 169*x  + 3600 = 0
$$\left(x^{4} - 169 x^{2}\right) + 3600 = 0$$
Detail solution
Given the equation:
$$\left(x^{4} - 169 x^{2}\right) + 3600 = 0$$
Do replacement
$$v = x^{2}$$
then the equation will be the:
$$v^{2} - 169 v + 3600 = 0$$
This equation is of the form
a*v^2 + b*v + c = 0

A quadratic equation can be solved
using the discriminant.
The roots of the quadratic equation:
$$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
where D = b^2 - 4*a*c - it is the discriminant.
Because
$$a = 1$$
$$b = -169$$
$$c = 3600$$
, then
D = b^2 - 4 * a * c = 

(-169)^2 - 4 * (1) * (3600) = 14161

Because D > 0, then the equation has two roots.
v1 = (-b + sqrt(D)) / (2*a)

v2 = (-b - sqrt(D)) / (2*a)

or
$$v_{1} = 144$$
$$v_{2} = 25$$
The final answer:
Because
$$v = x^{2}$$
then
$$x_{1} = \sqrt{v_{1}}$$
$$x_{2} = - \sqrt{v_{1}}$$
$$x_{3} = \sqrt{v_{2}}$$
$$x_{4} = - \sqrt{v_{2}}$$
then:
$$x_{1} = $$
$$\frac{0}{1} + \frac{144^{\frac{1}{2}}}{1} = 12$$
$$x_{2} = $$
$$\frac{\left(-1\right) 144^{\frac{1}{2}}}{1} + \frac{0}{1} = -12$$
$$x_{3} = $$
$$\frac{0}{1} + \frac{25^{\frac{1}{2}}}{1} = 5$$
$$x_{4} = $$
$$\frac{\left(-1\right) 25^{\frac{1}{2}}}{1} + \frac{0}{1} = -5$$
Rapid solution [src]
x1 = -12
$$x_{1} = -12$$
x2 = -5
$$x_{2} = -5$$
x3 = 5
$$x_{3} = 5$$
x4 = 12
$$x_{4} = 12$$
x4 = 12
Sum and product of roots [src]
sum
-12 - 5 + 5 + 12
$$\left(\left(-12 - 5\right) + 5\right) + 12$$
=
0
$$0$$
product
-12*(-5)*5*12
$$12 \cdot 5 \left(- -60\right)$$
=
3600
$$3600$$
3600
Numerical answer [src]
x1 = -5.0
x2 = 12.0
x3 = 5.0
x4 = -12.0
x4 = -12.0